Existence of periodic solutions to fractional p(z)-Laplacian parabolic problems

Authors

  • Ghizlane ZINEDDAINE Laboratory of Applied Mathematics and Scientific Computing, Faculty of Sciences and Techniques, Sultan Moulay Slimane University, BP 523, 23000, Beni Mellal, Morocco e-mail: ghizlanez587@gmail.com https://orcid.org/0009-0006-4800-2429
  • Abderrazak KASSIDI Laboratory of Applied Mathematics and Scientific Computing, Faculty of Sciences and Techniques, Sultan Moulay Slimane University, BP 523, 23000, Beni Mellal, Morocco e-mail: a.kassidi@usms.ma https://orcid.org/0000-0002-9105-1123
  • Said MELLIANI Laboratory of Applied Mathematics and Scientific Computing, Faculty of Sciences and Techniques, Sultan Moulay Slimane University, BP 523, 23000, Beni Mellal, Morocco e-mail: s.melliani@usms.ma https://orcid.org/0000-0002-5150-1185

DOI:

https://doi.org/10.24193/subbmath.2025.1.05

Keywords:

Periodic solutions, fractional p(z)-Laplacian, topological degree, parabolic equations

Abstract

We consider a class of nonlinear parabolic initial boundary value problems having the fractional p(z)-Laplacian operator. By combining variable exponent fractional Sobolev spaces with topological degree theory, we establish the
existence of a time-periodic non-trivial weak solution.

Mathematics Subject Classification (2010): 35B10, 35K55, 47H11, 35R11.

Received 02 January 2024; Accepted 20 March 2024.

References

[1] Abbassi, A., Allalou, C., Kassidi, A., Topological degree methods for a Neumann problem governed by nonlinear elliptic equation, Moroccan Journal of Pure and Applied Analysis, 6(2)(2020a), 231-242.

[2] Abbassi, A., Allalou, C., Kassidi, A., Existence of weak solutions for nonlinear p-elliptic problem by topological degree, Nonlinear Dyn. Syst. Theory, 20(3)(2020b), 229-241.

[3] Abbassi, A., Allalou, C., Kassidi, A., Existence results for some nonlinear elliptic equations via topological degree methods, J. Elliptic Parabol. Equ., 7(1)(2021), 121-136.

[4] Adhikari, D.R., Asfaw, T.M., Stachura, E., A topological degree theory for perturbed AG (S+)-operators and applications to nonlinear problems, J. Math. Anal. Appl., 497(2)(2021), 124912.

[5] Adhikari, D.R., Kartsatos, A.G., Strongly quasibounded maximal monotone perturbations for the Berkovits-Mustonen topological degree theory, J. Math. Anal. Appl., 348(1)(2008), 122-136.

[6] Allalou, C., Abbassi, A., Kassidi, A., The discontinuous nonlinear Dirichlet boundary value problem with p-Laplacian, Azerb. J. Math., 11(2021), no. 2.

[7] Applebaum, V., Lévy processes-from probability to finance quantum groups, Notices Am. Math. Soc., 51(2004), 1336-1347.

[8] Asfaw, T.M., A degree theory for compact perturbations of monotone type operators and application to nonlinear parabolic problem, Abstract and Appl. Anal, (2017).

[9] Asfaw, T.M., Topological degree theories for continuous perturbations of resolvent com- pact maximal monotone operators, existence theorems and applications, J. Nonlinear Sci. Appl., (JNSA), 13(5)(2020).

[10] Azroul, E., Benkirane, A., Shimi, M., Eigenvalue problems involving the fractional p(x)- Laplacian operator, Adv. Oper. Theory, 4(2019), no. 2, 539–555.

[11] Bahrouni, A., Radulescu, V.D., On a new fractional Sobolev space and applications to nonlocal variational problems with variable exponent, Discrete Contin. Dyn. Syst. Ser. S, 11(2018), no. 3, 379–389.

[12] Berkovits, J., Extension of the Leray-Schauder degree for abstract Hammerstein type mappings, J. Differential Equations, 234(2007), no. 1, 289–310.

[13] Berkovits, J., Mustonen, V., Topological degree for perturbations of linear maximal monotone mappings and applications to a class of parabolic problems, Rend. Mat. Appl., 12(1992), no. 3, 597-621.

[14] Bhauryal, N., Koley, U, Vallet, G., A fractional degenerate parabolic-hyperbolic Cauchy problem with noise, Journal of Differential Equations, 284(2021), 433-521.

[15] Bisci, G.M., Radulescu, V.D., Servadei, R., Variational methods for non-local fractional problems, Vol. 162, Cambridge University Press, 2016.

[16] Boudjeriou, T., Global existence and blow-up of solutions for a parabolic equation involving the fractional p(x)-Laplacian, Appl. Anal., 101(8)(2022), 2903–2921.

[17] Brezis, H., Lieb, E.H., A relation between pointwise convergence of functions and convergence of functionals, Proc. Amer. Math. Soc., 88(1983), 486-490.

[18] Caffarelli, L., Non-local diffusions, drifts and games, in nonlinear partial differential equations, Abel Symp., 7(2012) 37-52.

[19] Chen, Y., Levine, S., Rao, M., Variable exponent, linear growth functionals in image restoration, SIAM J. Appl. Math., 66(2006), no. 4, 1383–1406.

[20] Cho, Y.J., Chen, Y.Q., Topological Degree Theory and Applications, Chapman and Hall/CRC, 2006.

[21] Fan, X., Zhao, D., On the spaces Lp(x)(Ω) and W m,p(x)(Ω), J. Math. Anal. Appl., 263(2001), no. 2, 424–446.

[22] Fu, Y., Pucci, P., On solutions of space-fractional diffusion equations by means of potential wells, Electron. J. Qual. Theory Differ. Equ., 70(2016), 1–17.

[23] El Hammar, H., Allalou, C., Abbassi, A., Kassidi, A., The topological degree methods for the fractional p(·)-Laplacian problems with discontinuous nonlinearities, Cubo (Temuco), 24(1)(2022), 63-82.

[24] Hammou, M.A., Azroul, E., Existence of weak solutions for a nonlinear parabolic equations by topological degree, Advances in the Theory of Nonlinear Analysis and its Application, 4(4) (2020), 292–298.

[25] Hammou, M.A., Quasilinear parabolic problem with p(z)-Laplacian operator by topological degree, Kragujevac J. Math., 47(4)(2023), 523–529.

[26] Kaufmann, U., Rossi, J.D., Vidal, R., Fractional Sobolev spaces with variable exponents and fractional p(x)-Laplacians, Electron. J. Qual. Theory Differ. Equ., Paper no. 76(2017), 10.

[27] Kováčik, O., Rákosník, J., On spaces Lp(x) and W k,p(x), Czechoslovak Math. J.,

41(116)(1991), no. 4, 592–618.

[28] Laskin, N., Fractional quantum mechanics and Lévy path integrals, Physics Letters A, 268(2000), no. 4-6, 298–305.

[29] Lions, J.L., Quelques Méthodes de Résolution des Problèmes aux Limites Non-Linéaires, Dunod, Paris, 1969.

[30] Liu, J.J., Pucci, P., Zhang, Q.H., Wave breaking analysis for the periodic rotation-two-component Camassa-Holm system, Nonlinear Anal., 187(2019), 2146228.

[31] Mazón, J.M., Rossi, J.D., Toledo, J., Fractional p-Laplacian evolution equation, J. Math. Pures Appl., 165(9)(2016), 810–844.

[32] Metzler, R., Klafter, J., The random walk’s guide to anomalous diffusion: A fractional dynamics approach, Phys. Rep., 339(2000), no. 1, 77.

[33] Pan, N., Pucci, P., Xu, R.Z., Zhang, B.L., Degenerate Kirchhoff-type wave problems involving the fractional Laplacian with nonlinear damping and source terms, J. Evol. Equ., 19(3)(2019), 615–643.

[34] Perera, K., Agarwal, R.P., O’Regan, D., Morse theoretic aspects of p-Laplacian type operators, vol. 161 of Mathematical Surveys and Monographs, American Mathematical Society, Providence, RI, 2010.

[35] Pucci, P., Xiang, M., Zhang, B., A diffusion problem of Kirchhoff-type involving the nonlocal fractional p-Laplacian, Discrete Contin. Dyn. Syst., 37(7)(2017), 4035.

[36] Tao, M., Zhang, B., Positive solutions for perturbed fractional p-Laplacian problems, Fractal and Fractional, 6(10)(2022), 571.

[37] Temghart, S.A, Kassidi, A., Allalou, C., Abbassi, A., On an elliptic equation of Kirchhoff-type problem via topological degree, Nonlinear Stud., 28.4(2021), 1179–1193.

[38] Tsutsumi, M., Existence and nonexistence of global solutions of nonlinear parabolic equations, Publ. Res. Inst. Math. Sci., 8(1972/1973), 211–229.

[39] Yacini, S., Allalou, C., Hilal, K., Kassidi, A., Weak solutions Kirchhoff type problem via topological degree, Advanced Mathematical Models & Applications, Jomard Publishing, 6(3)(2021), 309–321.

[40] Zeider, E., Nonlinear Functional Analysis and its Applications, IIB: Nonlinear Mono- tone Operators, Springer, New York, 1990.

Downloads

Published

2025-02-27

How to Cite

ZINEDDAINE, G., KASSIDI, A., & MELLIANI, S. (2025). Existence of periodic solutions to fractional p(z)-Laplacian parabolic problems. Studia Universitatis Babeș-Bolyai Mathematica, 70(1), 69–82. https://doi.org/10.24193/subbmath.2025.1.05

Issue

Section

Articles

Similar Articles

<< < 3 4 5 6 7 8 9 10 11 12 > >> 

You may also start an advanced similarity search for this article.