Overiteration of d-variate tensor product Bernstein operators: A quantitative result (Dedicated to the memory of Professor Sorin Gal)
DOI:
https://doi.org/10.24193/subbmath.2024.4.13Keywords:
Positive linear operators, Bernstein operators, second order moduli, d-variate approximation, tensor product approximation, product of parametric extensionsAbstract
Extending an earlier estimate for the degree of approximation of over iterated univariate Bernstein operators towards the same operator of degree one, it is shown that an analogous result holds in the d-variate case. The method employed can be carried over to many other cases and is not restricted to Bernstein-type or similar methods.
Mathematics Subject Classification (2010): 41A10, 41A17, 41A25, 41A36, 41A63.
References
1. Agratini, O., Rus, I., Iterates of a class of discrete linear operators via contraction principle, Commentat. Math. Univ. Carol., 44(2003), no. 3, 555-563.
2. Agratini, O., Rus, I., Iterates of some bivariate approximation process via weakly Picard operators, Nonlinear Anal. Forum, 8(2003), no. 2, 159-168.
3. Albu, M., Asupra convergenței iteratelor unor operatori liniari și mărginiți, Sem. Itin. Ec. Fun. Approx. Convex., Cluj-Napoca, (1979), 6-16.
4. Gonska, H., Quantitative Aussagen zur Approximation durch positive lineare Operatoren, Dissertation, Universität Duisburg 1979.
5. Gonska, H., Products of parametric extensions: Refined estimates, In: Proc. 2nd Int. Conf. on "Symmetry and Antisymmetry" in Mathematics, Formal Languages and Computer Science (ed. by G.V. Orman and D. Bocu), 1-15. Brasov, Editura Universității "Transilvania", 2000.
6. Gonska, H., Kacsó, D., Pitul, P., The degree of convergence of over-iterated positive linear operators, J. of Applied Functional Analysis, 1(2006), 403-423.
7. Gonska, H., Kovacheva, R., The second order modulus revisited: Remarks, applications, problems, Confer. Sem. Mat. Univ. Bari, 257(1994), 1-32.
8. Jachymski, J., Convergence of iterates of linear operators and the Kelisky-Rivlin type theorems, Studia Math., 195(2009), no. 2, 99-112.
9. Karlin, S., Ziegler, Z., Iteration of positive approximation operators, J. Approx. Theory, 3(1970), 310-339.
10. Kelisky, R.P. Rivlin, T.J., Iterates of Bernstein polynomials, Pacific J. Math., 21(1967), 511-520.
11. Nagel, J., Sätze Korovkinschen Typs für die Approximation linearer positiver Operatoren, Dissertation, Universität Essen, 1978.
12. Popoviciu, T., Problem posed on Dec. 6, In: Caietul de Probleme al Catedrei de analiză, (1955), no. 58.
13. Precup, R., On the iterates of uni- and multidimensional operators, Bull. Transilv. Univ. Bra¸sov Ser. III. Math. Comput. Sci., 3(65)(2023), No. 2, 143-152.
14. Rus, I.A., Iterates of Bernstein operators, via contraction principle, J. Math. Anal. Appl., 292(2004), 259-261.
15. Sikkema, P.C., Über Potenzen von verallgemeinerten Bernstein-Operatoren, Mathematica, Cluj, 8(31)(1966), 173-180.
16. Wenz, H.-J., On the limits of (linear combinations of) iterates of linear operators, J. Approx. Theory, 89(1997), no. 2, 219-237.
17. Wikipedia (German), https://de.wikipedia.org/wiki/Hyperwürfel (Jan. 19, 2024).
18. Zhuk, V.V., Functions of the Lip 1 class and S. N. Bernstein’s polynomials (Russian), Vestn. Leningr. Univ., Math., 22 (1989), no. 1, 38-44; translation of Vestn. Leningr. Univ., Ser. I(1989), no. 1, 25-30.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Studia Universitatis Babeș-Bolyai Mathematica
![Creative Commons License](http://i.creativecommons.org/l/by-nc-nd/4.0/88x31.png)
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.