Multiplicity of weak solutions for a class of non-homogeneous anisotropic elliptic systems

Authors

  • Ahmed AHMED Department of Mathematics, Faculty of Sciences Dhar El Mahraz, Laboratory LAMA, University of Sidi Mohamed Ibn Abdellah, Atlas Fez, Morocco. Email: ahmedmath2001@gmail.com https://orcid.org/0000-0002-6740-892X
  • Mohamed Saad Bouh ELEMINE VALL Department of Applied Mathematics and Industrial Engineering, Professional University Institute, University of Nouakchott, Mauritania. Email: saad2012bouh@gmail.com https://orcid.org/0000-0003-2579-5869

DOI:

https://doi.org/10.24193/subbmath.2024.4.11

Keywords:

Non-homogeneous Neumann elliptic systems, Ricceri’s variational principle, anisotropic variable exponent Sobolev spaces

Abstract

We study the existence of infinitely many weak solutions for a new class of nonhomogeneous Neumann elliptic systems involving operators that extend both generalized Laplace operators and generalized mean curvature operators in the framework of anisotropic variable spaces.

Mathematics Subject Classification (2010): 35J50, 35J47, 35J30.

References

1. Ahmed, A., Ahmedatt, T., Hjiaj, H., Touzani, A., Existence of infinitely many weak solutions for some quasi-linear p(·)-elliptic Neumann problems, Math. Bohem., 142(2017), no. 3, 243-262.

2. Ahmed, A., Elemine Vall, M.S.B., Touzani, A., Benkirane, A., Existence of infinitely many solutions the Neumann problem for quasi-linear elliptic systems involving the p(·) and q(·)-Laplacian, Nonlinear Stud., 24(2017), no. 3, 687-698.

3. Ahmed, A., Elemine Vall, M.S.B., Touzani, A., Benkirane, A., Infinitely many solutions to the Neumann problem for elliptic systems in anisotropic variable exponent Sobolev spaces, Moroccan J. Pure and Appl. Anal., 3(2017), no. 1, 70-82.

4. Ahmed, A., Hjiaj, H., Touzani, A., Existence of infinitely many weak solutions for a Neumann elliptic equations involving the p(·)-Laplacian operator, Rend. Circ. Mat. Palermo (2), 64(2015), no. 3, 459-473.

5. Bendahmane, M., Chrif, M., El Manouni, S., An approximation result in generalized anisotropic Sobolev spaces and application, Z. Anal. Anwend., 30(2011), no. 3, 341-353.

6. Bendahmane, M., Mokhtari, F., Nonlinear elliptic systems with variable exponents and measure data, Moroccan J. Pure and Appl. Anal., 1(2015), no. 2, 108-125.

7. Boccardo, L., Figueiredo, D.G.De., Some Remarks on a system of quasilinear elliptic equations, NoDEA Nonlinear Differential Equations Appl., 9(2002), no. 3, 309-323.

8. Boureanu, M.M., Infinitely many solutions for a class of degenerate anisotropic elliptic problems with variable exponent, Taiwanese J. Math., 15(2011), no. 5, 2291-2310.

9. Boureanu, M.M., A new class of nonhomogeneous differential operators and applications to anisotropic systems, Complex Var. Elliptic Equ., 61(2016), no. 5, 712-730.

10. Boureanu, M.M., Multiple solutions for two general classes of anisotropic systems with variable exponents, Journal d’Analyse Mathématique, 150(2023), 685-735.

11. Boureanu, M.M., Matei, A., Sofonea, M., Nonlinear problems with p(·)-growth conditions and applications to antiplane contact models, Adv. Nonlinear Stud., 14(2014), no. 2, 295- 313.

12. Boureanu, M.M., Radulescu, V.D., Anisotropic Neumann problems in Sobolev spaces with variable exponent, Nonlinear Anal., 75(2012), no. 12, 4471-4482.

13. Boureanu, M.M., Udrea, C., Udrea, D.N., Anisotropic problems with variable exponents and constant Dirichlet condition, Electron. J. Differential Equations, 2013(2013), no. 220, 1-13.

14. Diening, L., Harjulehto, P., Hästö, P., Ružička, M., Lebesgue and Sobolev spaces with variable exponents, Lecture Notes in Math., 2017(2011).

15. Fan, X., Anisotropic variable exponent Sobolev spaces and p_(·)-Laplacian equations, Complex Var. Elliptic Equ., 56(2011), no. 7-9, 623-642.

16. Fragalà, I., Gazzola, F., Kawohl, B., Existence and nonexistence results for anisotropic quasi-linear equations, Ann. Inst. H. Poincaré C Anal. Non Linéaire, 21(2004), no. 5, 715-734.

17. Kone, B., Ouaro, S., Traore, S., Weak solutions for anisotropic nonlinear elliptic equa- tions with variable exponents, Electron. J. Differential Equations, 2009(2009), no. 144, 1-11.

18. Mihăilescu, M., Moroșanu, G., Existence and multiplicity of solutions for an anisotropic elliptic problem involving variable exponent growth conditions, Appl. Anal. 89(2010), no. 2, 257-271.

19. Mihăilescu, M., Pucci, P., Radulescu, V.D., Eigenvalue problems for anisotropic quasi-linear elliptic equations with variable exponent, J. Math. Anal. Appl., 340(2008), no. 1, 687-698.

20. Moschetto, D.S., Infinitely many solutions to the Dirichlet problem for quasilinear elliptic systems involving the p(x) and q(x) Laplacien, Matematiche (Catania), 63(2008), no. 1, 223-233.

21. Moschetto, D.S., Infinitely many solutions to the Neumann problem for quasilinear elliptic systems involving the p(x) and q(x)-Laplacian, International Mathematical Forum, 4(2009), no. 24, 1201-1211.

22. Rákosník, J., Some remarks to anisotropic Sobolev spaces I, Beiträge zur Analysis, 13(1979), 55-68.

23. Rákosník, J., Some remarks to anisotropic Sobolev spaces II, Beiträge zur Analysis, 15(1981), 127-140.

24. Ricceri, B., A general variational principle and some of its applications, J. Comput. Appl. Math., 113(2000), no. 1-2, 401-410.

25. Vélin, J., Existence result for a gradient-type elliptic system involving a pair of p(x) and q(x)-Laplacian operators, Complex Var. Elliptic Equ., 61(2016), no. 5, 644-681.

26. Zhao, L., Zhao, P., Xie, X., Existence and multiplicity of solutions for divergence type elliptic equations, Electron. J. Differential Equations, 2011(2011), no. 43, 1-9.

Downloads

Published

2024-12-13

How to Cite

AHMED, A., & ELEMINE VALL, M. S. B. (2024). Multiplicity of weak solutions for a class of non-homogeneous anisotropic elliptic systems. Studia Universitatis Babeș-Bolyai Mathematica, 69(4), 863–880. https://doi.org/10.24193/subbmath.2024.4.11

Issue

Section

Articles

Similar Articles

<< < 6 7 8 9 10 11 12 13 14 15 > >> 

You may also start an advanced similarity search for this article.