Nonlocal conditions for fractional differential equations

Authors

DOI:

https://doi.org/10.24193/subbmath.2024.4.08

Keywords:

Fractional differential equations, nonlocal conditions, upper and lower solutions, iterative technique, fixed point

Abstract

In this work we use the method of lower and upper solutions to develop an iterative technique, which is not necessarily monotone, and combined with a fixed-point theorem to prove the existence of at least one solution of nonlinear fractional differential equations with nonlocal boundary conditions of integral type.

Mathematics Subject Classification (2010): 34A08, 34B10, 34B15.

References

1. Agarwal, R. P., Benchohra, M., Hamani, S., Boundary value problems for differential inclusions with fractional order, Adv. Stud. Contemp. Math.,16(2008), no. 2, 181-196.

2. Al-Refai, M., On the fractional derivatives at extreme points, Electron. J. Qual. Theory Differ. Equ., (2012), no. 55, 1-5.

3. Balachandran, K., Uchiyama, K., Existence of solutions of nonlinear integrodifferential equations of Sobolev type with nonlocal conditions in Banach spaces, Proc. Indian Acad. Sci. Math. Sci., 110(2000), 225-232.

4. Benchohra, M., Hamani, S., Nonlinear boundary value problems for differential inclusions with Caputo fractional derivative, Topol. Methods Nonlinear Anal., 32(2008), 115- 130.

5. Bitsadze, A.V., Samarskii, A.A., Some elementary generalizations of linear elliptic boundary value problems, Dokl. Akad. Nauk SSSR, 185(1969), no. 4, 739-740.

6. Boucherif, A., Nonlocal conditions for two-endpoint problems, Int. J. Difference Eq., 15(2020), 321-334.

7. Boucherif, A., Bouguima, S. M., Benbouziane, Z., Al-Malki, N., Third order problems with nonlocal conditions of integral type, Bound. Value Probl., (2014), no. 137.

8. Boucherif, A., Ntouyas, S.K., Nonlocal initial value problems for first order fractional differential equations, Dynam. Systems Appl., 20(2011), 247-260.

9. Byszewski, L., Theorems about the existence and uniqueness of solutions of a semilinear evolution nonlocal Cauchy problem, J. Math. Anal. Appl., 162(1991), 494-505.

10. Cabada, A., The method of lower and upper solutions for second, third, fourth and higher order boundary value problems, J. Math. Anal. Appl., 185(1994), no. 2, 302-320.

11. Chang, Y.-K. and Nieto, J.J., Some new existence results for fractional differential inclusions with boundary conditions, Math. Comput. Model., 49(2009), 605-609.

12. Diethelm, K., The Analysis of Fractional Differential Equations, Springer-Verlag, Berlin, 2010.

13. Ding, Y., Wei, Z., On the extremal solution for a nonlinear boundary value problems of fractional p-Laplacian differential equation, Filomat, 30(2016), no. 14, 3771-3778.

14. Furati, K.M., Tatar, N.-E., An existence result for nonlocal fractional differential problem, J. Fract. Calc., 26(2004), 43-51.

15. Henderson, J., Thompson, H.B., Existence of multiple solutions for second order boundary value problems, J. Differential Equations, 166(2000), no. 2, 443-454.

16. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J., Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam, 2006.

17. Lakshmikanthan, V., Leela, S., Devi, J.V., Theory of Fractional Dynamic Systems, Cambridge Scientific Publishers, 2009.

18. Lin, L., Liu, X., Fang, H., Method of upper and lower solutions for fractional differential equations, Electron. J. Differential Equations, (2012), no. 100, 1-13.

19. Ma, R., A survey on nonlocal boundary value problems, Appl. Math. E-Notes, 7(2007), 257-279.

20. Mawhin, J., Topological degree methods in nonlinear boundary value problems, in: NS- FCBMS Regional Conference Series in Math., Amer. Math. Soc. Colloq. Publ., 1979.

21. Mawhin, J., Szymanska-Debowska, K., Convexity, topology and nonlinear differential systems with nonlocal boundary conditions: A survey, Rend. Instit. Mat. Univ. Trieste, 51(2019), 125-166.

22. McRae, F.A., Monotone iterative technique for periodic boundary value problems of Caputo fractional differential equations, Commun. Appl. Anal., 14(2010), 73-80.

23. Miller, K.S., Ross, B., An Introduction to the Fractional Calculus and Differential Equations, John Wiley, 1993.

24. Pawar, G.U., Salunke, J.N., Upper and Lower Solution Method for Nonlinear Fractional Differential Equations Boundary Value Problem, J. Comput. Math., 9(2018), 164-173.

25. Podlubny, I., Fractional Differential Equations, Academic Press, 1999.

26. Rachankov, I., Upper and lower solutions and topological degree, J. Math. Anal. Appl., 234(1999), no. 1, 311-327.

27. Smart, D.R., Fixed Point Theorems, Cambridge University Press 1974.

28. Wang, Y., Liang, S., Wang, Q., Existence results for fractional differential equations with integral and multi-point boundary conditions, Bound. Value Probl., (2018), no. 4.

29. Wang, X., Wang, L., Zeng, Q., Fractional differential equations with integral boundary conditions, J. Nonlinear Sci. Appl., 8(2015), 309-314.

30. Xie, W., Xiao, J., Luo, Z., Existence of extremal solutions for nonlinear fractional differential equation with nonlinear boundary conditionals, Appl. Math. Lett., 41(2015), 46-51.

31. Zhang, S., Positive solutions for boundary value problems of nonlinear fractional differential, Electron. J. Differential Equations, (2006), no. 36, 1-12.

32. Zhou, Y., Basic Theory of Fractional Differential Equations, World Scientific, Singapore, 2014.

Downloads

Published

2024-12-13

How to Cite

BOUCHERIF, A., DIB, F., & DAOUDI-MERZAGUI, N. (2024). Nonlocal conditions for fractional differential equations. Studia Universitatis Babeș-Bolyai Mathematica, 69(4), 813–824. https://doi.org/10.24193/subbmath.2024.4.08

Issue

Section

Articles

Similar Articles

<< < 27 28 29 30 31 32 33 > >> 

You may also start an advanced similarity search for this article.