Some applications of a Wright distribution series on subclasses of univalent functions

Authors

DOI:

https://doi.org/10.24193/subbmath.2024.4.04

Keywords:

Analytic functions, starlike function, convex function, probability distribution, Wright distribution series

Abstract

The purpose of the present paper is to find the sufficient conditions for the subclasses of analytic functions associated with Wright distribution series to be in subclasses of univalent functions and inclusion relations for such subclasses in the open unit disk D. Further, we consider the properties of integral operator related to Wright distribution series.

Mathematics Subject Classification (2010): 30C45.

References

1. Adegani, E.A., Bulboacă, T.B., Motamednezhad, A., Sufficient condition for p-valent strongly starlike functions, J. Contemp. Mathemat. Anal., 55, 213-223 (2020).

2. Al-Hawar, T., Frasin, B.A., Coefficient estimates and subordination properties for certain classes of analytic functions of reciprocal order, Stud. Univ. Babeș-Bolyai Math., 63(2018), no. 2, 203-212.

3. Altinkaya, Ș. Yalçin, Ş., Poisson distribution series for analytic univalent functions, Complex Anal. Oper. Theory, 12(2019), no. 5, 1315-1319.

4. Arif, M., Umar, S., Mahmood, S., New reciprocal class of analytic functions associated with linear operator, Iran. J. Sci. Technol. Trans. Sci., 42(2018), 881-886.

5. Dixit, K.K., Pal, S.K., On a class of univalent functions related to complex order, Indian J. Pure Appl. Math., 26(1995), no. 9, 889-896.

6. Ebadian, A., Cho, N.E., Adegani, A.E., Bulut, S., Bulboacă, T.B., Radii problems for some classes of analytic functions associated with Legendre polynomials of odd degree, J. Inequal. Appl. 2020, 178(2020).

7. El-Deeb, S.M., Bulboacă, T.B., Dziok, J., Pascal distribution series connected with certain subclasses of univalent functions, Kyungpook Math. J., 59(2019), no. 2, 301-314.

8. Eker, S.S., Murugusundaramoorthy, G., Aeker, B., Spiral-like functions associated with Miller-Ross-type Poisson distribution series, Bol. Soc. Mat. Mex., 29(2023), 16.

9. Frasin, B.A., Sabri, M.A., Sufficient conditions for starlikeness of reciprocal order, Eur. J. Pure Appl. Math., 10(2017), no. 4, 871-876.

10. Frasin, B.A., Talafha, Y., Al-Hawary, T., Subordination results for classes of functions of reciprocal order, Tamsui Oxford J. Info. Math. Sci., 30(2014), 81-89.

11. Gorenflo, R., Luchko, Y., Mainardi, F., Analytic properties and applications of Wright functions, Fract. Calc. Appl. Anal., 2(1999), no. 4, 383-414.

12. Kamali, M., Riskulova, A., On subordination results for certain classes of analytic functions of reciprocal order, Int. J. Anal. Appl., 19(2021), no. 1, 123-137.

13. Kumar, V., Kumar, S., Cho, N.E., Certain coefficient functionals for starlike functions of reciprocal order alpha, Thai J. Math., 20(2022), no. 3, 1183-1197.

14. Maharana, S., Prajapat, J.K., Bansal, D., Geometric properties of Wright function, Math. Bohem., 143(2018), no. 1, 99-111.

15. Maharana, S., Sahoo, S.K., Inclusion properties of planar harmonic mappings associated with the Wright function, Complex Var. Elliptic Equ., 66(2021), no. 10, 1619-1641.

16. Mahmood, S., Sokól, J., Srivastava, H.M., Malik, S.N., Some reciprocal classes of close-to-convex and quasi-convex analytic functions, Mathematics, 7(2019), no. 4, 309.

17. Murugusundaramoorthy, G., Subclasses of starlike and convex functions involvingPois- son distribution series, Afr. Mat., 28(2017), 1357-1366.

18. Mustafa, N., Geometric properties of normalized Wright function, Math. Comput. Appl., 21, no. 14, (2016).

19. Mustafa, N., Nezir, V., Dutta, H., Geometric properties of normalized Wright functions, In: Dutta, H., Peters, J. (eds.) Applied Mathematical Analysis: Theory, Methods and Applications. Studies in Systems, Decision and Control, vol 177. Springer, Cham., 2020.

20. Nafya, H.M., Cho, N.E., Adegani, E.A., Bulboacă, T.B., Geometric properties of normalized imaginary error functions, Stud. Univ. Babeș-Bolyai Math., 67(2022), no. 2, 455-462.

21. Nazeer, W., Mehmood, Q., Kang, S.M., Haq, A.U., An application of Binomial distribution series on certain analytic functions, J. Comput. Anal. Appl., 26(2019), 11-17.

22. Noor, K.I., Khan, N., Ahmad, Q.Z., Coefficient bounds for a subclass of multivalent functions of reciprocal order, Mathematics, 2(2017), no. 2, 322-335.

23. Nunokawa, M., Owa, S., Nishiwaki, J., Kuroki, K., Hayami, T., Differential subordination and argumental property, Comput. Math. Appl., 56(2008), no. 10, 2733-2736.

24. Owa, S., Srivastava, H.M., Some generalized convolution properties associated with certain subclasses of analytic functions, J. Ineqal. Pure Appl. Math., 3(2002), 1-13.

25. Polatoglu, Y., Blocal, M., Sen, A., Yavuz, E., An investigation on a subclass of p-valently starlike functions in the unit disk, Turk. J. Math., 31(2007), 221-228.

26. Porwal, S., Ahamad, D., An application of Hypergeometric distribution type series on certain analytic functions, Thai J. Math., 18(2020), no. 4, 2071-2078.

27. Porwal, S., Kumar, M., A unified study on starlike and convex functions associated with Poisson distribution series, Afr. Mat., 27(2016), no. 5, 1021-1027.

28. Porwal, S., Pathak, A.L., Mishra, O., Wright distribution and its applications on univalent functions, U.P.B. Sci. Bull., Series A, 84(2022), no. 4, 81-88.

29. Prajapat, J.K., Certain geometric properties of the Wright function, Integral Transforms Spec. Funct., 26(2015), 203-212.

30. Ravichandran, V., Sivaprasad Kumar, S., Argument estimate for starlike functions of reciprocal order, Southeast Asian Bull. Math., 35(2011), no. 5, 837-843.

31. Robertson, M.S., Univalent functions f (z) for which zf I(z) is spirallike, Michigan Math. J., 16(1969), 315-324.

32. Shrigan, M.G., Yalçin, Ş., Altinkaya, S¸., Unified approach to starlike and convex functions involving Poisson distribution series, Bul. Acad. Științe Repub. Moldova Mat., 97(2021), no. 3, 11-20.

33. Shrigan, M.G., Yalçin, Ş., Spiral-like functions associated with Wright distribution series, Ann. Univ. Oradea Fasc. Math., 31(2024), no. 1, 19-29.

34. Silverman, H., Univalent functions with negative coefficients, Proc. Amer. Math. Soc., 51(1975), 109-116.

35. Swaminathan, A., Certain sufficient conditions on Gaussian hypergeometric functions, J. Inequal. Pure Appl. Math., 83(5)(2004), no. 4, 1-10.

36. Uyanik, N., Shiraishi, H., Owa, S., Polatoglu, Y., Reciprocal classes of p-valently spirallike and p-valently Robertson functions, J. Inequal. Appl., (2011), 1-10.

37. Venkateswarlu, B., Vamshee Krishna, D., Rani, N., Third Hankel determinant for the inverse of reciprocal of bounded turning functions, Bul. Acad. Științe Repub. Moldova Mat., 79(2015), no. 3, 50-59.

38. Wanas, A.K., Khuttar, J.A., Applications of Borel distribution series on analytic functions, Earthline J. Math. Sci., 4(2020), no. 1, 71-82.

39. Wright, E.M., On the coefficients of power series having exponential singularities, J. London Math. Soc., 8(1993), 71-79.

Downloads

Published

2024-12-13

How to Cite

SHRIGAN, M. G., BHOURGUNDE, S. D., & SHELAKE, G. D. (2024). Some applications of a Wright distribution series on subclasses of univalent functions. Studia Universitatis Babeș-Bolyai Mathematica, 69(4), 759–767. https://doi.org/10.24193/subbmath.2024.4.04

Issue

Section

Articles

Similar Articles

<< < 23 24 25 26 27 28 29 30 31 > >> 

You may also start an advanced similarity search for this article.