Asymptotic Behavior of Generalized CR−iteration Algorithm and Application to Common Zeros of Accretive Operators
DOI:
https://doi.org/10.24193/subbmath.2024.2.10Keywords:
Fixed point, CR−iterative algorithm, nonself QNEMsAbstract
The purpose of this study is to provide a generalized CR−iteration algorithm for finding common fixed points (CFPs) for nonself quasi-nonexpansive mappings (QNEMs) in a uniformly convex Banach space. The suggested algorithm’s convergence analysis is analyzed in uniformly convex Banach spaces.
Mathematics Subject Classification (2010): 37C25, 47H10.
Received 28 October 2021; Accepted 12 January 2023
References
Agarwal, R.P., O’Regan, D., Sahu, D.R., Fixed Point Theory for Lipschitzian-Type Map- pings With Applications, Springer, New York, 2009.
Babu, G.V.R., Satyanarayana, G., Convergence of CR−iteration procedure for a nonlinear quasi contractive map in convex metric spaces, Commun. Nonlinear Anal., 7(2019), 82-88.
Bauschke, H.H., Combettes, P.L., Convex Analysis and Monotone Operator Theory in Hilbert Spaces, Springer, Berlin, 2011.
Browder, F.E., Semicontractive and semiaccretive nonlinear mappings in Banach spaces, Bull. Amer. Math. Soc. (N.S), 74(1968), 660-665.
Chang, R., Kumar, V., Kumar, S., Chan, C.K., Strong convergence of a new three step iterative scheme in Banach spaces, Am. J. Comput. Math., 2(2012), 345-357.
Chang, S.S., Wang, L., Joseph Lee, H.W., Chan, C.K., Strong and convergence for mixed type total asymptotically nonexpansive mappings in CAT(0) spaces, Fixed Point Theory Appl., 122(2013), 1-16.
Ciorănescu, I., Geometry of Banach Spaces, Duality Mapping and Nonlinear Problems, Kluwer, Amsterdam, 1990.
Ishikawa, S., Fixed points by a new iteration method, Proc. Amer. Math. Soc., 44(1974), 147-150.
Karakaya, V., Gürsoy, F., Dogan, K., Ertürk, M., Data dependence results for multistep and CR−iterative schemes in the class of contractive-like operators, Abstr. Appl. Anal., 2013(2013), 1-7.
Kim, J.K., Tuyen, T.M., Approximation common zero of two accretive operators in Banach spaces, Appl. Math. Comput., 283(2016), 265-281.
Kwan, Y.C., Shahid, A.A., Nazeer, W., Abbas, M., Kang, S.M., Fractal generation via
CR−iteration scheme with s-convexity, IEEE Access., 7(2019), 69986-69997.
Li, D., Shahid, A.A., Tassaddiq, A., Khan, A., Guo, X., Ahmad, M., CR−Iteration in generation of antifractals with s-convexity, IEEE Access., 8(2020), 61621-61630.
Mann, W.R., Mean value methods in iteration, Proc. Amer. Math. Soc., 6(1953), 506- 510.
Martinet, B., Régularisation d’inéquations variationelles par approximations successives, Rev. Fr. Inform. Rech. Oper., 4(1970), 154-158.
Martinet, B., Détermination approchée d’un point fixe d’une application pseudo- contractante, C.R. Math. Acad. Sci. Paris., 274(1972), 163-165.
Picard, E., Mémoire sur la théorie des équations aux dérivés partielles et la méthode des approximations successive, J. Math. Pures et Appl., 6(1890), 145-210.
Rockafellar, R.T., Monotone operators and the proximal point algorithm, SIAM J. Control Optim., 14(1976), 877-898.
Rockafellar, R.T., Augmented Lagrangians and applications of the proximal point algorithm in convex programming, Math. Oper. Res., 1(1976), 97-116.
Sahu, D.R., Applications of the S-iterative algorithm to constrained minimization problems and split feasibility problems, Fixed Point Theory, 12(2011), no. 1, 187-204.
Sahu, D.R., Ansari, Q.H., Yao, J.C., The prox-Tikhonov-like forward-backward method and applications, Taiwanese J. Math., 19(2015), 481-503.
Xu, H.K., Inequalities in Banach spaces with applications, Nonlinear Anal., 16(1991), 1127-1138.
Xu, H.K., Iterative algorithms for nonlinear operators, J. Lond. Math. Soc., 66(2002), no. 2, 240-256.
Xu, H.K., Strong convergence of an iterative method for nonexpansive and accretive operators, J. Math. Anal. Appl., 314(2006), 631-643.
Zegeye, H., Shahzad, N., Strong convergence theorems for a common zero of a finite family of maccretive mappings, Nonlinear Anal., 66(2007), 1161-1169.
Zhang, Q.N., Song, Y.S., Halpern type proximal point algorithm of accretive operators, Nonlinear Anal., 75(2012), 1859-1868.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Studia Universitatis Babeș-Bolyai Mathematica

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.