Triangular ideal relative convergence on modular spaces and Korovkin theorems

Authors

DOI:

https://doi.org/10.24193/subbmath.2023.4.17

Keywords:

Positive linear operators, the double sequences, triangular ideal relative modular convergence, Korovkin theorem.

Abstract

In this paper, we introduce the concept of triangular ideal relative convergence for double sequences of functions defined on a modular space. Based upon this new convergence method, we prove Korovkin theorems. Then, we construct an example such that our new approximation results work. Finally, we discuss the reduced results which are obtained by special choices.

Mathematics Subject Classification (2010): 40A35, 41A36, 46E30.

Received 23 February 2021; Accepted 22 April 2021. Published Online: 2023-12-11 Published Print: 2023-12-30

References

Bardaro, C., Boccuto A., Demirci, K., Mantellini, I., Orhan, S., Triangular A−statistical approximation by double sequences of positive linear operators, Results. Math., 68(2015), 271-291.

Bardaro, C., Boccuto A., Demirci, K., Mantellini, I., Orhan, S., Korovkin type theorems for modular ψ − A−statistical convergence, J. Funct. Spaces, Article ID 160401, 2015, p. 11.

Bardaro, C., Mantellini, I., Approximation properties in abstract modular spaces for a class of general sampling-type operators, Appl. Anal., 85(2006), 383-413.

Bardaro, C., Mantellini, I., Korovkin’s theorem in modular space, Comment. Math., 47(2007), no.2, 239-253.

Bardaro, C., Mantellini, I., A Korovkin theorem in multivarite modular function spaces, J. Funct. Spaces Appl., 7(2009), no. 2, 105-120.

Bardaro, C., Musielak, J., Vinti, G., Nonlinear Integral Operators and Applications, de Gruyder Series is Nonlinear Analysis and Appl., 9, Walter de Gruyter Publ., Berlin, 2003.

Bayram, N.S., Orhan, C., A−summation process in the space of locally integrable functions, Stud. Univ. Babeș-Bolyai Math., 65(2020), no. 2, 255-268.

Chittenden, E.W., On the limit functions of sequences of continuous functions converging relatively uniformly, Trans. Amer. Math. Soc., 20(1919), 179-184.

Çınar, S., Triangular A−statistical relative uniform convergence for double sequences of positive linear operators, Facta Univ. Ser. Math. Inform., 36(2021), no. 1, 65-77.

Demirci, K., I−Limit superior and limit inferior, Math. Commun., 6(2001), 165-172. [11] Demirci, K., Dirik, F., Four-dimensional matrix transformation and rate of A−statistical convergence of periodic functions, Mathematical and Computer Modelling, 52(2010), no. 9-10, 1858-1866.

Demirci, K., Kolay, B., A−Statistical relative modular convergence of positive linear operators, Positivity, 21(2017), 847-863.

Demirci, K., Orhan, S., Statistically relatively uniform convergence of positive linear operators, Results. Math., 69(2016), 359-367.

Demirci, K., Orhan, S., Statistical relative approximation on modular spaces, Results. Math., 71(2017), 1167-1184.

Dirik, F., Demirci, K., Korovkin-type approximation theorem for functions of two variables in statistical sense, Turk. J. Math., 34(2010), 73-83.

Donner, K., Korovkin theorems in Lp spaces, J. Funct. Anal., 42(1981), no. 1, 12-28. [17] Fast, H., Sur la convergence statistique, Colloq. Math., 2(1951), 241-244.

Gadjiev, A.D., Orhan, C., Some approximation theorems via statistical convergence, Rocky Mountain J. Math., 32(2002), 129-138.

Karaku¸s, S., Demirci, K., Matrix summability and Korovkin type approximation theorem on modular spaces, Acta Math. Univ. Comenianae, 79(2010), no. 2, 281-292.

Karakuş, S., Demirci, K., Duman, O., Statistical approximation by positive linear operators on modular spaces, Positivity, 14(2010), 321-334.

Korovkin, P.P., Linear Operators and Approximation Theory, Hindustan Publ. Co., Delhi, 1960.

Kostyrko, P., Salat, T., and Wilczynski W., I−Convergence, Real Anal. Exchange, 26(2000), 669-685.

Kozlowski, W.M., Modular Function Spaces, Pure Appl. Math., 122, Marcel Dekker, Inc., New York, 1988.

Mantellini, I., Generalized sampling operators in modular spaces, Comment. Math., 38(1998), 77-92.

Moore, E.H., An Introduction to a Form of General Analysis, The New Hawen Mathematical Colloquim, Yale University Press, New Hawen, 1910.

Móricz, F., Statistical convergence of multiple sequences, Arch. Math., 81(1)(2003), 82- 89.

Musielak, J., Orlicz Spaces and Modular Spaces, Lecture Notes in Mathematics, 1034, Springer-Verlag, Berlin, 1983.

Musiaelak, J., Nonlinear approximation in some modular function spaces I, Math. Japon., 38(1993), 83-90.

Orhan, S., Demirci, K., Statistical A−summation process and Korovkin type approximation theorem on modular spaces, Positivity, 18(2014), 669-686.

Orhan, S., Demirci, K., Statistical approximation by double sequences of positive linear operators on modular spaces, Positivity, 19(2015), 23-36.

Steinhaus, H., Sur la convergence ordinaire et la convergence asymptotique, Colloq. Math., 2(1951), 73-74.

Şahin, P., Dirik, F., Statistical relative uniform convergence of double sequence of positive linear operators, Appl. Math., 17(2017), 207-220.

Yilmaz, B., Demirci, K., Orhan, S., Relative modular convergence of positive linear operators, Positivity, 20(2016), 565-577.

Downloads

Published

2023-12-11

How to Cite

ÇINAR, S., & YILDIZ, S. (2023). Triangular ideal relative convergence on modular spaces and Korovkin theorems. Studia Universitatis Babeș-Bolyai Mathematica, 68(4), 907–924. https://doi.org/10.24193/subbmath.2023.4.17

Issue

Section

Articles

Similar Articles

<< < 17 18 19 20 21 22 23 24 25 26 > >> 

You may also start an advanced similarity search for this article.