Decay rate of solutions to the Cauchy problem for a coupled system of a viscoelastic wave equations with a strong delay in Rⁿ

Authors

  • Amina CHAILI Department of Mathematics, Engineering and Sustainable Development Laboratory, University of Ain Temouchent, Ain Temouchent, Algeria. Email: amina.chaili@univ-temouchent.edu.dz. https://orcid.org/0009-0005-2635-8822
  • Bochra BELHADJI Department of Mathematics, University Ghardaia, Algeria. Email: belhadji.bochra@univ-ghardaia.dz. https://orcid.org/0000-0003-2375-115X
  • Abderrahmane BENIANI Department of Mathematics, Engineering and Sustainable Development Laboratory, University of Ain Temouchent, Algeria. Email: abderrahmane.beniani@univ-temouchent.edu.dz. https://orcid.org/0000-0002-5518-253X

DOI:

https://doi.org/10.24193/subbmath.2023.4.16

Keywords:

Lyapunov function, relaxation function, density, decay rate, weighted spaces.

Abstract

Using weighted spaces, we establish a general decay rate properties of solutions as T→∞ for a coupled system of a viscoelastic wave equations in Rn under some conditions on g1, g2, ϕ. We exploit a density function to introduce weighted spaces for solutions and using an appropriate Lyapunov function.

Mathematics Subject Classification (2010): 35L05, 35L15, 35L70, 35B40.

Received 19 October 2020; Accepted 10 November 2020. Published Online: 2023-12-11 Published Print: 2023-12-30

References

Alabau-Boussouira, F., Cannarsa, P., A general method for proving sharp energy decay rates for memory-dissipative evolution equations, C.R. Acad. Sci. Paris, Ser. I, 347(2009), 867-872.

Arnold, V.I., Mathematical Methods of Classical Mechanics, Springer-Verlag, New York, 1989.

Benaissa, A., Mokeddem, S., Global existence and energy decay of solutions to the Cauchy problem for a wave equation with a weakly nonlinear dissipation, Abstr. Appl. Anal., 11(2004), 935-955.

Cavalcanti, M.M., Oquendo, H.P., Frictional versus viscoelastic damping in a semilinear wave equation, SIAM J. Control Optim., 42(2003), no. 4, 1310-1324.

Kafini, M., Uniforme decay of solutions to Cauchy viscoelastic problems with density, Electron. J. Differential Equations, 2011(2011), no. 93, 1-9.

Kafini, M., Messaoudi, S.A., On the uniform decay in viscoelastic problem in Rn, Appl. Math. Comput., 215(2009), 1161-1169.

Kafini, M., Messaoudi, S.A., Tatar, N.E., Decay rate of solutions for a Cauchy viscoelastic evolution equation, Indag. Math., 22(2011), 103-115.

Karachalios, N.I., Stavrakakis, N.M., Existence of global attractor for semilinear dissipative wave equations on Rn, J. Differential Equations, 157(1999), 183-205.

Karachalios, N.I., Stavrakakis, N.M., Global existence and blow-up results for some non-linear wave equations on Rn, Adv. Differential Equations, 6(2001), 155-174.

Martinez, P., A new method to obtain decay rate estimates for dissipative systems, ESAIM Control Optimal. Calc. Var., 4(1999), 419-444.

Mustafa, M.I., Messaoudi, S.A., General stability result for viscoelastic wave equations, J. Math. Phys., 53(2012), 053702.

Papadopulos, P.G., Stavrakakis, N.M., Global existence and blow-up results for an equations of Kirchhoff type on Rn, Topol. Methods Nonlinear Anal., 17(2001), 91-109.

Downloads

Published

2023-12-11

How to Cite

CHAILI, A., BELHADJI, B., & BENIANI, A. (2023). Decay rate of solutions to the Cauchy problem for a coupled system of a viscoelastic wave equations with a strong delay in Rⁿ. Studia Universitatis Babeș-Bolyai Mathematica, 68(4), 895–905. https://doi.org/10.24193/subbmath.2023.4.16

Issue

Section

Articles

Similar Articles

<< < 2 3 4 5 6 7 8 9 10 11 > >> 

You may also start an advanced similarity search for this article.