Global solution for a diffusive epidemic model (HIV/AIDS) with an exponential behavior of source

Authors

  • El Hachemi DADDIOUAISSA Faculty of New Technologies of Information and Communication, Kasdi Merbah University, UKM, Ouargla, Algeria. Email: dmhbsdj@gmail.com.

DOI:

https://doi.org/10.24193/subbmath.2023.4.15

Keywords:

Reaction-diffusion systems, Lyapunov function, global solution.

Abstract

We consider the question of global existence and uniform boundedness of nonnegative solutions of a system of reaction-diffusion equations with exponential nonlinearity, without any restriction on initial data, using maximum principle and Lyapunov function techniques.

Mathematics Subject Classification (2010): 35K57, 35K45.

Received 14 March 2021; Accepted 03 June 2021. Published Online: 2023-12-11 Published Print: 2023-12-30

References

Alikakos, N., Lp−Bounds of solutions of reaction-diffusion equations, Comm. Partial Differential Equations, 4(1979), 827-868.

Barabanova, A., On the global existence of solutions of reaction-diffusion equation with exponential nonlinearity, Proc. Amer. Math. Soc., 122(1994), 827-831.

Benachour, S., Rebiai, B., Global classical solutions for reaction-diffusion systems with nonlinearities of exponential growth, J. Evol. Equ., 10(2010), no. 3, 511-527.

Castillo-Chavez, C., Cooke, K., Huang, W., Levin, S.A., On the role of long incubation periods in the dynamics of acquires immunodeficiency syndrome, AIDS, J. Math. Biol., 27(1989), 373-398.

Crandall, M., Pazy, A., Tartar, L., Global existence and boundedness in reaction-diffusion systems, SIAM J. Math. Anal., 18(1987), 744-761.

Cussler, E.L., Diffusion, Cambridge University Press, Second Edition, 1997.

Daddiouaissa, E.H., Existence of global solutions for a system of reaction-diffusion equations with exponential nonlinearity, Electron. J. Qual. Theory Differ. Equ., 73(2009), 1-7.

Daddiouaissa, E.H., Global solution for a diffusive epidemic model (HIV/AIDS) with a strong exponential source, Jour. Abstr. Differ. Equ. Appl., 9(2018), no. 1, 30-40.

Djebara, L., Abdelmalek, S., Bendoukha, S., Global existence and asymptotic behavior of solutions for some coupled systems via Lyapunov functional, Acta Math. Sci. Ser. B., 39B(6)(2019), 1538-1550.

Friedman, A., Partial Differential Equation of Parabolic Type, Prentice Hall, 1964.

Hamaya, Y., On the asymptotic behavior of a diffusive epidemic model (AIDS), Nonlinear Anal., 36(1999), 685-696.

Haraux, A., Kirane, M., Estimation C1 pour des problèmes paraboliques semi-linéaires, Ann. Fac Sci. Toulouse Math., 5(1983), 265-280.

Haraux, A., Youkana, A., On a result of K. Masuda concerning reaction-diffusion equations, Tohoku Math. J., 40(1988), 159-163.

Henry, D., Geometric Theory of Semilinear Parabolic Equations. Lecture Notes in Mathematics 840, Springer-Verlag, New York, 1981.

Hollis, S.L., Martin, R.H., Pierre, M., Global existence and boundedness in reaction- diffusion systems, SIAM J. Math. Anal., 18(1987), no. 3, 744-761.

Kanel, J.I., On global initial boundary-value problems for reaction-diffusion systems with balance conditions, Nonlinear Anal., 37(1999), 971-995.

Kirane, M., Global bounds and asymptotics for a system of reaction-diffusion equations, J. Math Anal. Appl., 138(1989), 1172-1189.

Masuda, K., On the global existence and asymptotic behaviour of reaction-diffusion equations, Hokkaido Math. J., 12(1983), 360-370.

Melkemi, L., Mokrane, A.Z., Youkana, A., Boundedness and large-time behavior results for a diffusive epidemic model, J. Appl. Math., (2007), 1-15.

Pazy, A., Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer Verlag, New York, 1983.

Webb, G.F., A reaction-diffusion model for a deterministic diffusive epidemic, J. Math. Anal. Appl., 84(1981), 150-161.

Zeidler, E., Nonlinear Functional Analysis and its Applications, Tome II/b, Springer Verlag, 1990.

Zelenyak, T.I., Stabilization of solutions to boundary value problems for second order parabolic equations in one space variable, Differ. Uravn. Protsessy Upr., 4(1968), 34-45.

Downloads

Published

2023-12-11

How to Cite

DADDIOUAISSA, E. H. (2023). Global solution for a diffusive epidemic model (HIV/AIDS) with an exponential behavior of source. Studia Universitatis Babeș-Bolyai Mathematica, 68(4), 885–894. https://doi.org/10.24193/subbmath.2023.4.15

Issue

Section

Articles

Similar Articles

<< < 3 4 5 6 7 8 9 10 11 12 > >> 

You may also start an advanced similarity search for this article.