On generalized close-to-convexity related with strongly Janowski functions

Authors

  • Khalida Inayat NOOR Department of Mathematics, COMSATS University Islamabad, Pakistan. Email: khalidan@gmail.com. https://orcid.org/0000-0002-5000-3870
  • Shujaat Ali SHAH Department of Mathematics, COMSATS University Islamabad, Pakistan. Email: khalidan@gmail.com.

DOI:

https://doi.org/10.24193/subbmath.2023.4.09

Keywords:

Starlike, convex, bounded boundary rotation, Carathéodory and Janowski functions, subordination, convolution.

Abstract

Janowski functions of strongly type are used to define certain classes of analytic functions which generalize the concept of close-to-convexity and bounded boundary rotation. Coefficient results, a necessary condition, distortion bounds, Hankel determinant problem and several other interesting properties of these classes are studied. Some significant well known results are derived as special cases.

Mathematics Subject Classification (2010): 30C45, 30C50, 30C80.

Received 17 October 2020; Accepted 11 November 2020. Published Online: 2023-12-11 Published Print: 2023-12-30

References

Bernardi, S.D., Convex and starlike univalent functions, Trans. Amer. Mat. Soc., 135(1969), 429-446.

Brannan, D.A., On functions of bounded boundary rotation, Proc. Edinburg Math. Soc., 16(1968), 339-347.

Brannan, D.A., Clunie, J.G., Kirwan, W.E., On the coefficient problem for the functions of bounded boundary rotation, Ann. Acad. Sci. Fenn. Series A1, 523(1973), 1-18.

Cantor, D.G., Power series with integral coefficients, Bull. Amer. Math. Soc., 69(1963), 362-366.

Edrei, A., Sur les déterminants récurrents et les singularités d’une fonction donnée par son développement de Taylor, Compos. Math., 7(1940), 20-88.

Goodman, A.W., On close-to-convex functions of higher order, Ann. Univ. Sci. Budapest, Eotous Sect. Math., 25(1972), 17-30.

Goodman, A.W., Univalent Functions, Vols. I and II, Polygonal Publishing House, Washington, New Jersey, 1983.

Hayman, W.K., On functions with positive real part, J. London Math. Soc., 36(1961), 34-48.

Janowski, W., Some extremal problems for certain families of analytic functions, Ann. Polon. Math., 28(1973), 279-326.

Kaplan, W., Close-to-convex Schlicht functions, Mich. Math. J., 1(1952), 169-185.

Kumar, S.S., Kumar, V., Ravichandran, V., Cho, E., Sufficient conditions for starlike functions associated with the lemniscate of Bernoulli, J. Inequal. Appl., 176(2013), 13 pages.

Noonan, J.W., Thomas, D.K., On the Hankel determinant of a really mean p-valent functions, Proc. London Math. Soc., 25(1972), 503-524.

Noor, K.I., On the Hankel determinants of close-to-convex univalent functions, J. Math. Math. Sci., 3(1980), 477-481.

Noor, K.I., Hankel determinant problem for functions of bounded boundary rotations, Rev. Roum. Math. Pures Appl., 28(1983), 731-739.

Noor, K.I., On subclasses of close-to-convex functions of higher order, Int. J. Math. Math. Sci., 15(1992), 279-290.

Noor, K.I., On certain analytic functions related with strongly close-to-convex functions, Appl. Math. Comput., 197(2008), 149-157.

Noor, K.I., Some properties of analytic functions with bounded radius rotations, Compl. Var. Ellipt. Eqn., 54(2009), 865-877.

Padmanabhan, K.S., Parvatham, R., Properties of a class of functions with bounded boundary rotation, Ann. Polon. Math., 31(1975), 311-323.

Pinchuk, B., Functions with bounded boundary rotation, Israel J. Math., 10(1971), 7-16.

Pommerenke, C., On starlike and close-to-convex functions, Proc. London Math. Soc., 13(1963), 290-304.

Pommerenke, C., On the coefficients and Hankel determinant of univalent functions, J. London Math. Soc., 41(1966), 111-122.

Rogosinski, W., On the coefficients of subordinate functions, Proc. Lond. Math. Soc., 48(1943), 48-82.

Ruscheweyh, S., New criteria for univalent functions, Proc. Amer. Math. Soc., 49(1975), 109-115.

Ruscheweyh, S., Sheil-Small, T., Hadamard product of Schlicht functions and the Polya-Schoenberg conjecture, Comment. Math. Helv., 48(1973), 119-135.

Silvia, E.M., Subclasses of close-to-convex functions, Int. J. Math. Math. Sci., 6(1983), 449-458.

Downloads

Published

2023-12-11

How to Cite

NOOR, K. I., & SHAH, S. A. (2023). On generalized close-to-convexity related with strongly Janowski functions. Studia Universitatis Babeș-Bolyai Mathematica, 68(4), 799–816. https://doi.org/10.24193/subbmath.2023.4.09

Issue

Section

Articles

Similar Articles

<< < 6 7 8 9 10 11 12 13 14 15 > >> 

You may also start an advanced similarity search for this article.