Certain geometric properties of generalized Bessel-Maitland function
DOI:
https://doi.org/10.24193/subbmath.2023.4.08Keywords:
Univalent, starlike, convex and close-to-convex function, subordination, Bessel functions, Bessel-Maitland functions.Abstract
In the present study, we first introduce Generalized Bessel-Maitland function and then derive sufficient conditions under which the Generalized Bessel-Maitland function have geometric properties like univalency, starlikeness and convexity in the open unit disk.
Mathematics Subject Classification (2010): 30C45.
Received 05 March 2021; Accepted 22 June 2021. Published Online: 2023-12-11 Published Print: 2023-12-30
References
Baricz, Á., Generalized Bessel Functions of the First Kind, Lecture Notes in Mathematics, Vol. 1994, Springer-Verlag, Berlin, 2010.
Baricz, Á, Kupán, P.A., Szász, R., The radius of starlikeness of normalized Bessel function of first kind, Proc. Amer. Math. Soc., 142(2014), no. 6, 2019-2025.
Baricz, Á., Poonusamy, S., Starlikeness and convexity of generalized Bessel functions,
Integral Transforms Spec. Funct., 21(2010), no. 9, 641-653.
Baricz, Á, Szász, R., The radius of convexity of normalized Bessel functions of the first kind, Anal. Appl., 12(2014), no. 5, 485-509.
Becker, J., Differentialgleichung und quasikonform fortsetzbare schlichte Funktionen, (German), J. Reine Angew. Math., 255(1972), 23-43.
Duren, P.L., Univalent Functions, Grundlehren der Mathematischen Wissenschaften, Band 259, Springer-Verlag, New York, Berlin, Heidelberg and Tokyo, 1983.
MacGregor, T.H., The radius of univalence of certain analytic functions II, Proc. Amer Math Soc., 14(1963), 521-524.
MacGregor, T.H., A class of univalent functions, Proc. Amer. Math. Soc., 15(1964), 311-317.
Marichev, O.I., Handbook of Integral Transform and Higher Transcendental Functions, Theory and Algorithm Tables, Ellis Horwood, Chichester [John Wiley and Sons], New York, 1983.
Miller, S.S., Mocanu, P.T., Univalence of Gaussian and confluent hypergeometric functions, Proc. Amer. Math. Soc., (1990), no. 11, 333-342.
Mocanu, P.T., Some starlike conditions for analytic functions, Rev. Roumaine Math. Pures Appl., 33(1988), 117-124.
Pescar, V., A new generalization of Ahlfors and Beckers criterion of univalence, Bull. Malays. Math. Sci. Soc. (Second Series), 19(1996), 53-54.
Ponnusamy, S., Vuorinen, M., Univalence and convexity properties for Gaussian hyper- geometric functions, Rocky Mountain J. Math., 31(2001), 327-353.
Prajapat, J.K., Certain geometric properties of normalized Bessel functions, Appl. Math. Lett., 24(2011), 2133-2139.
Prajapat, J.K., Certain geometric properties of the Wright functions, Integral Trans- form. Spec. Funct., 26(2015), no. 3, 203-212.
Ruscheweyh, St., Singh, V., On the order of starlikeness of hypergeometric functions, J. Math. Anal. Appl., (1986), no. 113, 1-11.
Selinger, V., Geometric properties of normalized Bessel functions, Pure Math Appl., 6(1995), 273-277.
Szász, R., About the starlikeness of Bessel functions, Integral Transforms Spec. Funct., 25(2014), no. 9, 750-755.
Szász, R., Kupán, P.A., About the univalence of the Bessel functions, Stud. Univ. Babeș-Bolyai Math, 54(2009), no. 1, 127-132.
Watson, G.N., A Treatise on the Theory of Bessel Functions, Cambridge University Press, 1962.
Xanthopoulos, X., Subclasses of starlike functions with R{f!(z)} > 0, Stud. Univ. Babeș-Bolyai Math., 38(1993), 39-47.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Studia Universitatis Babeș-Bolyai Mathematica
![Creative Commons License](http://i.creativecommons.org/l/by-nc-nd/4.0/88x31.png)
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.