Radius problems for certain classes of analytic functions

Authors

DOI:

https://doi.org/10.24193/subbmath.2023.4.04

Keywords:

Starlike function, radius of starlikeness, exponential function.

Abstract

Radius constants for functions in three classes of analytic functions to be a starlike function of order α, parabolic starlike function, starlike function associated with lemniscate of Bernoulli, exponential function, cardioid, sine function, lune, a particular rational function, and reverse lemniscate are obtained.

Mathematics Subject Classification (2010): 30C45.

Received 29 December 2020; Accepted 23 March 2021. Published Online: 2023-12-11 Published Print: 2023-12-30

References

Ali, R.M., Jain, N.K., Ravichandran, V., Radii of starlikeness associated with the lemniscate of Bernoulli and the left-half plane, Appl. Math. Comput., 218(2012), no. 11, 6557-6565.

Cho, N.E., Kumar, V., Sivaprasad Kumar, S., Ravichandran, V., Radius problems for starlike functions associated with the sine function, Bull. Iranian Math. Soc., 45(2019), no. 1, 213-232.

El-Faqeer, A.S.A., Mohd, M.H., Ravichandran, V., Supramaniam, S., Starlikeness of certain analytic functions, preprint.

Gandhi, S., Ravichandran, V., Starlike functions associated with a lune, Asian-Eur. J. Math., 10(2017), no. 4, 1750064, 12 pp.

Kanaga, R., Ravichandran, V., Starlikeness for certain close-to-star functions, Hacett. J. Math. Stat., published online (https://dergipark.org.tr/en/download/article-file/1003494).

Kumar, S., Ravichandran, V., A subclass of starlike functions associated with a rational function, Southeast Asian Bull. Math., 40(2016), no. 2, 199-212.

Lecko, A., Ravichandran, V., Sebastian, A., Starlikeness of certain non-univalent function, preprint.[8] Lee, S.K., Khatter, K., Ravichandran, V., Radius of starlikeness for classes of analytic functions, Bull. Malays. Math. Sci. Soc., 43(2020), no. 6, 4469-4493.

Madaan, V., Kumar, A., Ravichandran, V., Radii of starlikeness and convexity of some entire functions, Bull. Malays. Math. Sci. Soc., 43(2020), no. 6, 4335-4359.

Mendiratta, R., Nagpal, S., Ravichandran, V., A subclass of starlike functions associated with left-half of the lemniscate of Bernoulli, Internat. J. Math., 25(2014), no. 9, 1450090, 17 pp.

Mendiratta, R., Nagpal, S., Ravichandran, V., On a subclass of strongly starlike functions associated with exponential function, Bull. Malays. Math. Sci. Soc., 38(2015), no. 1, 365- 386.

Raina, R.K., Sokół, J., Some properties related to a certain class of starlike functions, C.R. Math. Acad. Sci. Paris, 353(2015), no. 11, 973-978.

Rønning, F., Uniformly convex functions and a corresponding class of starlike functions, Proc. Amer. Math. Soc., 118(1993), no. 1, 189-196.

Sebastian, A., Ravichandran, V., Radius of starlikeness of certain analytic functions, Math. Slovaca, 71(2021), no. 1, 83-104.

Shah, G.M., On the univalence of some analytic functions, Pacific J. Math., 43(1972), 239-250.

Shanmugam, T.N., Ravichandran, V., Certain properties of uniformly convex functions, in: Computational methods and function theory, 1994 (Penang), 319-324, Ser. Approx. Decompos., 5, World Sci. Publ., River Edge, NJ.

Sharma, K., Jain, N.K., Ravichandran, V., Starlike functions associated with a cardioid, Afr. Mat., 27(2016), no. 5-6, 923-939.

Sokół, J., Stankiewicz, J., Radius of convexity of some subclasses of strongly starlike functions, Zeszyty Nauk. Politech. Rzeszowskiej Mat., 19(1996), 101-105.

Downloads

Published

2023-12-11

How to Cite

CHUNG, Y. L., MOHD, M. H., & SUPRAMANIAM, S. (2023). Radius problems for certain classes of analytic functions. Studia Universitatis Babeș-Bolyai Mathematica, 68(4), 743–754. https://doi.org/10.24193/subbmath.2023.4.04

Issue

Section

Articles

Similar Articles

<< < 14 15 16 17 18 19 20 > >> 

You may also start an advanced similarity search for this article.