Hardy-Littlewood-Stein-Weiss type theorems for Riesz potentials and their commutators in Morrey spaces

Authors

DOI:

https://doi.org/10.24193/subbmath.2023.3.11

Keywords:

Riesz potential, commutator, fractional maximal operator, Schrödinger operator, Hardy-Littlewood-Stein-Weiss type estimate, Morrey space, BMO space.

Abstract

In this paper, we consider weighted Morrey spaces Lp,λ,|·|γ (R). Finally we apply our results to various operators which are estimated from above by Riesz potentials.

Mathematics Subject Classification (2010): 42B20, 42B25, 42B35.

References

Adams, D.R., A note on Riesz potentials, Duke Math. J., 42(1975), 765-778.

Adams, D.R., Choquet integrals in potential theory, Publ. Mat., 42(1998), 3-66.

Arendt, W., Elst, A.F.M., Gaussian estimates for second order elliptic operators with boundary conditions, J. Operator Theory, 38(1997), 87-130.

Auscher, P., Tchamitchian, P., Square Root Problem for Divergence Operators and Related Topics, Astérisque, 249, Soc. Math. France, 1998.

Caffarelli, L., Elliptic second order equations, Rend. Sem. Mat. Fis. Milano, 58(1990), 253-284.

Chiarenza, F., Frasca, M., Morrey spaces and Hardy-Littlewood maximal function, Rend. Math., 7(1987), 273-279.

Duong, X.T., Yan, L.X., On commutators of fractional integrals, Proc. Amer. Math. Soc., 132(2004), no. 12, 3549-3557.

Di Fazio, G., Palagachev, D.K., Ragusa, M.A., Global Morrey regularity of strong solutions to the Dirichlet problem for elliptic equations with discontinuous coefficients, J. Funct. Anal., 166(1999), 179-196.

Di Fazio, G., Ragusa, M.A., Commutators and Morrey spaces, Bollettino U.M.I., 7(5- A)(1991), 323-332.

Fefferman, C., The uncertainty principle, Bull. Amer. Math. Soc., 9(1983), 129-206.

Giaquinta, M., Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems, Princeton Univ. Press, Princeton, NJ, 1983.

Hardy, H.G., Littlewood, J.E., Some properties of fractional integrals, I. Math. Z., 27(1928), no. 4, 565-606.

Hasanov, J.J., Hardy-Littlewood-Stein-Weiss inequality in the variable exponent Morrey spaces, Proc. Inst. Math. Mech. Natl. Acad. Sci. Azerb., 39(2013), 47-62.

Ho, K-P., Singular integral operators, John-Nirenberg inequalities and Tribel-Lizorkin type spaces on weighted Lebesgue spaces with variable exponents, Rev. Un. Mat. Argentina, 57(2016), no. 1, 85-101.

Karaman, T., Guliyev, V.S., Serbetci, A., Boundedness of sublinear operators generated by Calderón-Zygmund operators on generalized weighted Morrey spaces, An. Științ. Univ. Al. I. Cuza Iași, Mat. (N.S.), 60(2014), no. 1, 227-244.

Kufner, A., John, O., Fuçik, S., Function Spaces, Noordhoff International Publishing: Leyden, Publishing House Czechoslovak Academy of Sciences: Prague, 1977.

Kurata, K., Nishigaki, S., Sugano, S., Boundedness of integral operators on generalized Morrey spaces and its application to Schrödinger operators, Proc. AMS, 128(1999), no. 4, 1125-1134.

Kurata, K., Sugano, S., A remark on estimates for uniformly elliptic operators on weighted Lp spaces and Morrey spaces, Math. Nachr., 209(2000), 137-150.

Li, H.Q., Estimations Lp des opérateurs de Schrödinger sur les groupes nilpotents, J. Funct. Anal., 161(1999), 152-218.

Liu, Y., The weighted estimates for the operators V α(−∆G + V )−β and V α∇G(−∆G +V )−β on the stratified Lie group G, J. Math. Anal. Appl., 349(2009), 235-244.

Lu, G.Z., A Fefferman-Phong type inequality for degenerate vector fields and applications, Panamer. Math. J., 6(1996), 37-57.

Mazzucato, A.L., Besov-Morrey spaces: Function space theory and applications to non-linear PDE, Trans. Amer. Math. Soc., 355(2003), 1297-1364.

McIntosh, A., Operators which have an H1-calculusin, in Proc. Centre Math. Analysis, Vol. 14, Miniconference on Operator Theory and Partial Differential Equations, A.N.U., Canberra, 1986, 210-231.

Morrey, C.B., On the solutions of quasi-linear elliptic partial differential equations, Trans. Amer. Math. Soc., 43(1938), 126-166.

Muckenhoupt, B., Weighted norm inequalities for the Hardy-Littlewood maximal function, Trans. Amer. Math. Soc., 165(1972), 207-226.

Nakamura, S., Sawano, Y., Tanaka, H., The fractional operators on weighted Morrey spaces, J. Geom. Anal., 28(2018), no. 2, 1502-1524.

Peetre, J., On the theory of Lp,λ spaces, J. Funct. Anal., 4(1969), 71-87.

Perez, C., Two weighted norm inequalities for Riesz potentials and uniform Lp-weighted Sobolev inequalities, Indiana Univ. Math. J., 39(1990), 31-44.

Ruiz, A., Vega, L., Unique continuation for Schrödinger operators with potential in Morrey spaces, Publ. Mat., 35(1991), 291-298.

Ruiz, A., Vega, L., On local regularity of Schrödinger equations, Int. Math. Res. Notices, 1993(1993), no. 1, 13-27.

Samko, S., Hardy-Littlewood-Stein-Weiss inequality in the Lebesgue spaces with variable exponent, Fract. Calc. Appl. Anal., 6(2003), no. 4, 421-440.

Shen, Z., Lp estimates for Schrödinger operators with certain potentials, Ann. Inst. Fourier (Grenoble), 45(1995), 513-546.

Shen, Z., The periodic Schrödinger operators with potentials in the Morrey class, J. Funct. Anal., 193(2002), 314-345.

Shen, Z., Boundary value problems in Morrey spaces for elliptic systems on Lipschitz domains, Amer. J. Math., 125(2003), 1079-1115.

Simon, B., Maximal and minimal Schrödinger forms, J. Op. Theory, 1(1979), 37-47.

Stein, E.M., Harmonic Analysis: Real-Variable Methods, Orthogonality and Oscillatory Integrals, Princeton Univ. Press, Princeton, NJ, 1993.

Stein, E.M., Weiss, G., Fractional integrals on n-dimensional Euclidean space, J. Math. and Mech., 7(1958), no. 4, 503-514.

Sugano, S., Estimates for the operators V α(−∆ + V )−β and V α∇(−∆ + V )−β with certain nonnegative potentials V, Tokyo J. Math., 21(1998), 441-452.

Taylor, M.E., Analysis on Morrey spaces and applications to Navier-Stokes and other evolution equations, Comm. Partial Differential Equations, 17(1992), 1407-1456.

Zhong, J.P., Harmonic analysis for some Schrödinger type operators, PhD Thesis, Princeton University, 1993.

Downloads

Published

2023-09-30

How to Cite

AYKOL, C. ., & HASANOV, J. J. . (2023). Hardy-Littlewood-Stein-Weiss type theorems for Riesz potentials and their commutators in Morrey spaces. Studia Universitatis Babeș-Bolyai Mathematica, 68(3), 613–629. https://doi.org/10.24193/subbmath.2023.3.11

Issue

Section

Articles

Similar Articles

<< < 22 23 24 25 26 27 28 29 30 31 > >> 

You may also start an advanced similarity search for this article.