Linear delay-differential operator of a meromorphic function sharing two sets or small function together with values with its c-shift or q-shift

Authors

  • Arpita ROY Department of Mathematics, University of Kalyani, West Bengal, India. Email: arpita140793@gmail.com.
  • Abhijit BANERJEE Department of Mathematics, University of Kalyani, West Bengal, India. Email: abanerjeekal@gmail.com.

DOI:

https://doi.org/10.24193/subbmath.2023.3.10

Keywords:

Meromorphic functions, uniqueness, delay-differential operator, shift, shared set, weighted sharing.

Abstract

The paper is devoted to study the unique problem of linear delay- differential operator of a meromorphic function sharing two sets or small function together with values with its c-shift and q-shift operator. Results of this paper drastically improve two recent results of Meng-Liu [J. Appl. Math. Inform. 37(1- 2)(2019), 133-148] and Qi-Li-Yang [Comput. Methods Funct. Theory, 18(2018), 567-582]. In addition to this, one of our results improves and extends that of Qi-Yang [Comput. Methods Funct. Theory, 20(2020), 159-178].

 Mathematics Subject Classification (2010): 39A70, 30D35. 

References

Banerjee, A., Meromorphic functions sharing two sets, Czech. Math. J., 57(132)(2007), 1199-1214.

Barnett, D.C., Halburd, R.G., Korhonen, R.J., Morgan, W., Nevanlinna theory for the q-difference operator and meromorphic solutions of q-difference equations, Proc. Roy. Soc. Edinburgh Sect. A, 137(2007), 457-474.

Chiang, Y.M., Feng, S.J., On the Nevanlinna characteristic f (z + η) and difference equations in complex plane, Ramanujan J., 16(2008), 105-129.

Gross, F., Univ. Kentucky, Lexington, Kentucky (1976); Lecture Notes in Math., 599(1977), 51-69, Springer, Berlin.

Halburd, R.G., Korhonen, R.J., Difference analogue of the lemma on the logarithmic derivative with applications to difference equations, J. Math. Anal. Appl., 314(2006), 477-487.

Halburd, R., Korhonen, R., Tohge, K., Holomorphic curves with shift-invariant hyper-plane preimages, Trans. Amer. Math. Soc., 366(2014), 4267-4298.

Hayman, W.K., Meromorphic Functions, The Clarendon Press, Oxford, 1964.

Lahiri, I., Weighted sharing and uniqueness of meromorphic functions, Nagoya Math. J., 161(2001), 193-206.

Lahiri, I., Weighted value sharing and uniqueness of meromorphic functions, Complex Var. Theo. Appl., 46(2001), 241-253.

Lahiri, I., Dewan, S., Value distribution of the product of a meromorphic function and its derivative, Kodai Math. J., 26(2003), 95-100.

Li, P., Wang, W.J., Entire functions that share a small function with its derivative, J. Math. Anal. Appl., 328(2007), 743-751.

Meng, C., Liu, G., Uniqueness of meromorphic functions concerning their shifts and derivatives, J. Appl. Math. Inform., 37(2019), no. 1-2, 133-148.

Qi, X., Li, N., Yang, L., Uniqueness of meromorphic functions concerning their differences and solutions of difference Painlevé equations, Comput. Methods Funct. Theory, 18(2018), 567-582.

Qi, X., Yang, L., Uniqueness of meromorphic functions concerning their shifts and derivatives, Comput. Methods Funct. Theory, 20(2020), 159-178.

Yang, C.C., Yi, H.X., Uniqueness Theory of Meromorphic Functions, Kluwer Academic Publishers, Dordrecht, 2003.

Zhang, J.L., Korhonen, R.J., On the Nevanlinna characteristic of f (qz) and its application, J. Math. Anal. Appl., 369(2010), 537-544.

Downloads

Published

2023-09-30

How to Cite

ROY, A. ., & BANERJEE, A. . (2023). Linear delay-differential operator of a meromorphic function sharing two sets or small function together with values with its c-shift or q-shift. Studia Universitatis Babeș-Bolyai Mathematica, 68(3), 593–612. https://doi.org/10.24193/subbmath.2023.3.10

Issue

Section

Articles

Similar Articles

<< < 26 27 28 29 30 31 32 33 34 35 > >> 

You may also start an advanced similarity search for this article.