Non-instantaneous impulsive fractional integro-differential equations with proportional fractional derivatives with respect to another function
DOI:
https://doi.org/10.24193/subbmath.2023.3.07Keywords:
Non-instantaneous impulses, proportional fractional derivatives, Leray-Schauder alternative.Abstract
This paper concerns the existence and uniqueness of solutions of non- instantaneous impulsive fractional integro-differential equations with proportional fractional derivatives with respect to another function. By the aid of the nonlinear alternative of Leray-Schauder type and the Banach contraction mapping principle, the main results are demonstrated. Two examples are inserted to illustrate the applicability of the theoretical results.
Mathematics Subject Classification (2010): 34K37, 34A37, 47H10.
References
Abbas, M.I., On the initial value problems for the Caputo-Fabrizio impulsive fractional differential equations, Asian-Eur. J. Math., (2021), 2150073, https://doi.org/10.1142/S179355712150073X
Abbas, M.I., Ulam stability of fractional impulsive differential equations with Riemann-Liouville integral boundary conditions, J. Contemp. Math. Anal., 50(5)(2015), 209-219.
Agarwal, R., Hristova, S., O’Regan, D., Iterative techniques for the initial value problem for Caputo fractional differential equations with non-instantaneous impulses, Appl. Math. Comput., 334(2018), 407-421.
Anderson, D.R., Ulness, D.J., Newly defined conformable derivatives, Adv. Dyn. Syst. Appl., 10(2)(2015), 109-137.
Dugundji, J., Granas, A., Fixed Point Theory, Warsaw, 1982.
Hernándaz, E., O’Regan, D., On a new class of abstract impulsive differential equation, Proc. Amer. Math. Soc., 141(2013), 1641-1649.
Jarad, F., Abdeljawad, T., Rashid, S., Hammouch, Z., More properties of the proportional fractional integrals and derivatives of a function with respect to another function, Adv. Differential Equations, (2020), 2020:303.
Jarad, F., Alqudah, M.A., Abdeljawad, T., On more general forms of proportional fractional operators, Open Math., 18(2020), 167-176.
Khalil, R., Al Horani, M., Yousef, A., Sababheh, M., A new definition of fractional derivative, J. Comput. Appl. Math., 264(2014), 65-70.
Kilbas, A.A., Srivastava, H.M., Trujillo, J.J., Theory and Applications of Fractional Differential Equations, Elsevier B. V., Amsterdam, 2006.
Kumar, A., Chauhan, H.V., Ravichandran, C., Nisar, K.S., Baleanu, D., Existence of solutions of non-autonomous fractional differential equations with integral impulse condition, Adv. Differential Equations, (2020), 2020:434.
Kumar, A., Pandey, D.N., Existence of mild solution of Atangana-Baleanu fractional differential equations with non-instantaneous impulses and with non-local conditions, Chaos Solitons Fractals, 132(2020), 109551.
Liu, K., Wang, J., O’Regan, D., Fečkan, M., A new class of (ω, c)-periodic non- instantaneous impulsive differential equations, Mediterr. J. Math., (2020), 17:155.
Luo, D., Luo, Z., Existence of solutions for fractional differential inclusions with initial value condition and non-instantaneous impulses, Filomat, 33(17)2019), 5499-5510.
Myshkis, A.D., Samoilenko, A.M., Systems with impulsive at fixed moments of time, Mat. Sb., 74(1967), 202-208.
Ngo, V.H., O’Regan, D., A remark on ψ-Hilfer fractional differential equations with non-instantaneous impulses, Math. Methods Appl. Sci., (2020), 1-15.
Podlubny, I., Fractional Differential Equations, Academic Press, San Diego, 1999.
Samko, S., Kilbas, A., Marichev, O., Fractional Integrals and Derivatives, Gordon and Breach Science Publishers, Longhorne, PA, 1993.
Srivastava, H.M., Saad, K.M., Some new models of the time-fractional gas dynamics equation, Adv. Math. Models Appl., 3(1)(2018), 5-17.
Zada, A., Ali, N., Riaz, U., Ulam’s stability of multi-point implicit boundary value problems with non-instantaneous impulses, Boll. Unione Mat. Ital., 13(2020), 305-328.
Zhao, Y., Luo, C., Chen, H., Existence results for non-instantaneous impulsive nonlinear fractional differential equation via variational methods, Bull. Malays. Math. Sci. Soc., 43(2020), 2151-2169.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Studia Universitatis Babeș-Bolyai Mathematica
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.