An extension of Wirtinger’s inequality to the complex integral

Authors

  • Silvestru Sever DRAGOMIR Mathematics, College of Sport, Health and Engineering, Victoria University, Melbourne, Australia; DST-NRF Centre of Excellence in the Mathematical and Statistical Sciences, School of Computer Science&Applied Mathematics, University of the Witwatersrand, Johannesburg, South Africa. Email: sever.dragomir@vu.edu.au. https://orcid.org/0000-0003-2902-6805

DOI:

https://doi.org/10.24193/subbmath.2023.3.04

Keywords:

Wirtinger’s inequality, trapezoid inequality, complex integral, analytic functions.

Abstract

In this paper, we establish a natural extension of the Wirtinger inequality to the case of complex integral of analytic functions. Applications related to the trapezoid inequalities are also provided. Examples for logarithmic and exponential complex functions are given as well.

Mathematics Subject Classification (2010): 26D15, 26D10.

References

Alomari, M. W., On Beesack–Wirtinger inequality, Results Math., Online First 2017 Springer International Publishing https://doi.org/10.1007/s00025-016-0644-6.

Beesack, P.R., Extensions of Wirtinger’s inequality, Trans. R. Soc. Can., 53(1959), 21-30.

Cerone, P., Dragomir, S.S., A refinement of the Grüss inequality and applications, Tamkang J. Math., 38(2007), no. 1, 37-49. Preprint RGMIA Res. Rep. Coll., 5(2)(2002), Article 14. [Online: http://rgmia.vu.edu.au/v5n2.html].

Diaz, J.B., Metcalf, F.T., Variations on Wirtinger’s inequality in: "Inequalities" Academic Press, New York, 1967, 79-103.

Fejér, L., Über die Fourierreihen, II, (Hungarian), Math. Naturwiss, Anz. Ungar. Akad. Wiss., 24(1906), 369-390.

Giova, R., An estimate for the best constant in the Lp-Wirtinger inequality with weights, J. Func. Spaces Appl., 6(2008), no. 1, 1-16.

Jaroš, J., On an integral inequality of the Wirtinger type, Appl. Math. Letters, 24(2011), 1389-1392.

Lee, C.F., Yeh, C.C., Hong, C.H., Agarwal, R.P., Lyapunov and Wirtinger inequalities, Appl. Math. Lett., 17(2004), 847-853.

Ricciardi, T., A sharp weighted Wirtinger inequality, Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat., 8(1)(2005), 259-267.

Swanson, C.A., Wirtinger’s inequality, SIAM J. Math. Anal., 9(1978), 484-491.

Downloads

Published

2023-09-30

How to Cite

DRAGOMIR, S. S. . (2023). An extension of Wirtinger’s inequality to the complex integral. Studia Universitatis Babeș-Bolyai Mathematica, 68(3), 507–516. https://doi.org/10.24193/subbmath.2023.3.04

Issue

Section

Articles

Similar Articles

<< < 15 16 17 18 19 20 21 22 23 24 > >> 

You may also start an advanced similarity search for this article.