On the order of convolution consistence of certain classes of harmonic functions with varying arguments
DOI:
https://doi.org/10.24193/subbmath.2023.2.04Keywords:
Analytic functions with negative coefficients, univalent functions, extreme points, order of convolution consistence, starlikeness, convexity.Abstract
Making use of a modified Hadamard product or convolution of harmonic functions with varying arguments, combined with an integral operator, we study when these functions belong to a given class. Following an idea of U. Bednarz and J. Sokol we define the order of convolution consistence of three classes of functions and determine it for certain classes of harmonic functions with varying arguments defined using a convolution operator.
Mathematics Subject Classification (2010): 30C45, 30C50.
Received 29 June 2021; Accepted 14 July 2021.
References
Ursula Bednarz and J. Sokol, On order of convolution consistence of the analytic functions, Stud. Univ. Babeș-Bolyai Math. 55 (2010), no. 3.
C. M. Balaeti, An integral operator associated with differential superordinations, An. Stiint. Univ. "Ovidius" Constanta Ser. Mat. 17 (2009), no. 3, 37-44.
B.C. Carlson, S.B. Shaffer, Starlike and prestarlike hypergeometric functions, SIAM, J. Math. Anal., 15 (2002), 737-745.
J. Clunie, T. Sheil-Small, Harmonic univalent functions, Ann. Acad. Sci. Fenn. Ser.A.I. Math., 9 (1984) 3-25.
J.M. Jahangiri, G. Murugusundaramoorthy, K. Vijaya, Salagean-type harmonic univalent functions, Southwest. J. Pure and Appl., Math., 2 (2002), 77-82.
J.M. Jahangiri, G. Murugusundaramoorthy, K.Vijaya, Starlikeness of Rucheweyh type harmonic univalent functions, J. Indian Acad. Math., (2004), 191-200.
J.M. Jahangiri, H. Silverman, Harmonic univalent functions with varying arguments, Internat. J. Appl. Math., 8 (2002), 267-275.
H.A. Al-Kharsani, R.A. Al-Khai, Univalent harmonic functions, J.Ineqal. Pure and Appl.Maths., 8 Issue 2, Article 59.
G. Murugusundaramoorthy, A class of Ruscheweyh-type harmonic univalent functions with varying arguments, Southwest J. Pure Appl. Math., (2003), 90-95.
G. Murugusundaramoorthy, G.S.Salagean , On a certain class of harmonic functions associated with a convolution structure, Mathematica, Tome 54 (77), special issue 2012, 131-142
G. Murugusundaramoorthy, K. Vijaya, On certain subclasses of harmonic functions associated with Wright hypergeometric functions, Advanced Studies Contemporary Mathematics, 1 (2009).
S. Ruscheweyh, New criteria for univalent functions, Proc. Amer. Math. Soc., 49 (1975), 109-115.
G. S. Salagean, Subclasses of univalent functions, Complex analysis-fifth Romanian-Finnish seminar, Part 1 (Bucharest, 1981), Lecture Notes in Math., 1013, Springer, Berlin, (1983), 362-372.
G. S. Salagean and A. Venter, On the order of convolution consistence of the analytic functions with negative coefficients, Mathematica Bohemica, Vol. 142, No. 4,(2017), 381-386.
H.M. Srivastava, S. Owa, Some characterization and distortion theorems involving fractional calculus, generalized hypergeometric functions, Hadamard products, linear operators and certain subclasses of analytic functions, Nagoya Math. J., 106 (1987), 1-28.
E.M. Wright, The asymptotic expansion of the generalized hypergeometric function, Proc. London. Math. Soc., 46 (1946), 389-408.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Studia Universitatis Babeș-Bolyai Mathematica
![Creative Commons License](http://i.creativecommons.org/l/by-nc-nd/4.0/88x31.png)
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.