On applications of Andrica-Badea and Nagy inequalities in spectral graph theory

Authors

  • Igor MILOVANOVIĆ Faculty of Electronic Engineering Beogradska 14, 18000 Nis, Serbia e-mail: igor@elfak.ni.ac.rs https://orcid.org/0000-0003-2209-9606
  • Emina MILOVANOVIĆ Faculty of Electronic Engineering Beogradska 14, 18000 Nis, Serbia e-mail: ema@elfak.ni.ac.rs
  • Edin GLOGIĆ State University of Novi Pazar Novi Pazar, Serbia e-mail: edin_gl@hotmail.com https://orcid.org/0000-0001-6295-8298

Keywords:

Inequalities, first Zagreb index, spread of graph.

Abstract

Applications of Andrica-Badea and Nagy inequalities for determining bounds of graph invariants of undirected, connected graphs are investigated. We consider bounds of the following invariants: the first Zagreb index, general Randic index, Laplacian linear spread and normalized Laplacian spread of graphs.

Mathematics Subject Classification (2010): 60E15, 05C50.

References

Andrica, D., Badea, C., Grus inequality for positive linear functionals, Period. Math. Hungar, 19(1988), no. 2, 155{167.

Bell, F.K., A note on the irregularity of graphs, Lin. Algebra Appl., 161(1992), 45-54.

Biggs, N., Algebraic graph theory, Cambridge Univ. Press, Cambridge, UK, 1993.

Butler, S., Eigenvalues and structures of graph, Ph. Dissertation, University of California, San Diego, 2008.

de Caen, D., An upper bound on the sum of squares of degrees in a graph, Discr. Math., 185(1998), no. 1-3, 245{248.

Cavers, M., Fallat, S., Kirkland, S., On the normalized Laplacian energy and general Randic index of graphs, Lin. Algebra Appl., (2010), no. 433, 172-190.

Chung, F.R.K., Spectral graph theory, Am. Math. Soc., Providence, 1997.

Cvetkovi_c, D., Doob, M., Sachs, H., Spectra of graph theory and application, New York, Academic Press, 1980.

Edwards, C.S., The largest vertex degre sum for a triangle of a graph, Bull. London Math. Soc., 9(1977), 203{208.

Fath-Tabar, G.H., Ashra, A.R., Some remark on Laplacian eigenvalues of graphs, Math. Commun., 15(2010), no. 2, 443-451.

Goldberg, F., New results on eigenvalues on degree deviation http://orXivorg.1403.269V1, 2014.

Gutman, I., Furtula, B., Elphick, C., Tree new/old vertex-degree based toplogoical indices, MATCH Commun. Math. Comput. Chem., 72(2014), 617-632.

Gutman, I., Trinajstic, N., Graph theory and molecular orbitas. Total π-electron energy of alternant hydrocarbons, Chem. Phys. Letters, 17(1972), 535-538.

Li, X., Yang, Y., Sharp bounds for the general Randic index, MATCH Commun. Math. Comput. Chem., 51(2004), 155-166.

Merris, R., Laplacian matrices of graphs: A survey, Lin. Algebra Appl., 197-198(1994), 143-176.

Milovanovic, I., Milovanovic, E., Remark on inequalities for the Laplacian spread of graphs, Czeh. Math. J., 64 (2014), no. 139, 285-287.

Nagy, J.V.S., Uber algebraische Gleichungen mit lauter reellen Wurzeln, Jahresbericht der deutschen mathematiker-Vereingung, 27(1918), 37-43.

Randic, M., On characterization of molecular branching, J. Amer. Chem. Soc., 97(1975), 6609-6615.

Zumstein, P., Comparison of spectral methods through the adjacency matrix and the Laplacian of a graph, Ph. Dissertation, ETH Zurich, 2005.

You, Z., Liu, B., The Laplacian spread of graphs, Czech. Math. J., 62(2012), 159-168.

Downloads

Published

2015-12-30

How to Cite

MILOVANOVIĆ, I., MILOVANOVIĆ, E., & GLOGIĆ, E. (2015). On applications of Andrica-Badea and Nagy inequalities in spectral graph theory. Studia Universitatis Babeș-Bolyai Mathematica, 60(4), 603–609. Retrieved from https://studia.reviste.ubbcluj.ro/index.php/subbmathematica/article/view/5838

Issue

Section

Articles

Similar Articles

<< < 3 4 5 6 7 8 9 > >> 

You may also start an advanced similarity search for this article.