Lines in the three-dimensional Bolyai-Lobachevskian hyperbolic geometry
Keywords:
Hyperbolic geometry, geodesics, orthogonal surfaces, cylindrical coordinates.Abstract
The purpose of this paper is to describe the geodesics of the three- dimensional Bolyai-Lobachevskian hyperbolic space. We also determine the equation of the orthogonal surfaces and the scalar curvature of the surfaces of revolution. The metric applied is the Lobachevskian metric extended into three dimensions. During the analysis we use Cartesian and cylindrical coordinates. This article is a continuation of the paper [4].
Mathematics Subject Classification (2010): 53A35.
References
Bolyai, J., Karteszi, F., Appendix, a ter tudomanya, Akademiai Kiado, Budapest, 1977.
David L., Bolyai geometria az Appendix alapjan, Kolozsvar, 1944.
Dubrovin, B.A., Fomenko, A.T., Novikov, S.P., Modern Geometry - Methods and Applications, Springer, New York, 1984.
Gabos, Z., Mester, A., Curves with constant geodesic curvature in the Bolyai-Lobachevskian plane, Stud. Univ. Babes-Bolyai Math., 60(2015), no. 3, 449-462.
Liebmann, H., Nichteuklidische Geometrie, Leipzig, Berlin, 1923.
Lobacsevszkij., N.I., Karteszi F., Geometriai vizsgalatok a parhuzamosok elmeletenek korebol, Akad_emiai Kiad_o, Budapest, 1951.
Lobacsevszkij, N.I., Pangeometrie, Leibzig, 1902.
Sanielevici, S., Opera matematica (Romanian), [Mathematical Works], Editura Academiei Republicii Socialiste Romania, Bucharest, 1968.
Szasz, P., Bevezetes a Bolyai-Lobacsevszkij-fele geometriaba, Akademiai Kiado, Budapest, 1973.
Thorpe, J. A., Elementary Topics in Differential Geometry, Springer, New York, 1994.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2015 Studia Universitatis Babeș-Bolyai Mathematica
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.