A new class of (j; k)-symmetric harmonic starlike functions
Keywords:
(j; k)-Symmetric functions, harmonic functions.Abstract
Using the concepts of (j; k)-symmetrical functions we define the class of sense-preserving harmonic univalent functions SHj;ks (β), and prove certain interesting results.
Mathematics Subject Classification (2010): 30C45.
References
Al Shaqsi, K., Darus, M., On subclass of harmonic starlike functions with respect to k-symmetric points, Int. Math. Forum, 2(2007), 2799-2805.
Ahuja, O.P., Jahangiri, J.M., Sakaguchi-type harmonic univalent functions, Scientiae Mathematicae Japonicae, 59(1)(2004), 239-244.
Clunie, J., Shell-Small, T., Harmonic univalent functions, Ann. Acad. Aci. Fenn. Ser. A I Math., 9(1984), 3-25.
Jahangiri, J.M, Harmonic functions starlike in the unit disk, Journal of Mathematical Analysis and Applications, 235(2)(1999), 470-477.
Liczberski, P., Polubinski, J., On (j; k)-symmtrical functions, Mathematica Bohemica, 120(1995), 13-25.
Shell-Small, T., Constants for planar harmonic mapping, J. London. Math. Soc., 42(2)(1990), 237-248.
Silverman, H., Harmonic univalent functions with negative coe_cients, Journal of Mathematical Analysis and Applications, 220(1)(1998), 283-289.
Silverman, H., Silvia, E.M., Subclasses of harmonic univalent functions, The New Zealand Journal of Mathematics, 28(2)(1999), 275-284.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2015 Studia Universitatis Babeș-Bolyai Mathematica
![Creative Commons License](http://i.creativecommons.org/l/by-nc-nd/4.0/88x31.png)
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.