Helicoidal surfaces with Δ ᴶ ᵣ = Ar in 3-dimensional Euclidean space

Authors

  • Bendehiba SENOUSSI Department of Mathematics, Faculty of Sciences University of Chlef, Algeria e-mail: se_bendhiba@yahoo.fr
  • Mohammed BEKKAR Department of Mathematics, Faculty of Sciences University of Oran, Algeria e-mail: bekkar_99@yahoo.fr

Keywords:

Surfaces of coordinate finite type, helicoidal surfaces, Laplace operator.

Abstract

In this paper we study the helicoidal surfaces in the 3-dimensional Euclidean space under the condition ΔJ r = Ar; J = I; II; III; where A = (aij) is a constant 3 χ 3 matrix and ΔJ denotes the Laplace operator with respect to the fundamental forms I, II and III.

Mathematics Subject Classification (2010): 53A05, 53A07, 53C40.

References

Baba-Hamed, Ch., Bekkar, M., Helicoidal surfaces in the three-dimensional Lorentz-Minkowski space satisfying ΔIIri = λiri, J. Geom., 100(2011), 1-10.

Bekkar, M., Zoubir, H., Surfaces of revolution in the 3-dimensional Lorentz – Minkowski space satisfying Δxi = λixi, Int. J. Contemp. Math. Sciences, 3(2008), 1173-1185.

Bekkar, M., Senoussi, B., Factorable surfaces in the three-dimensional Euclidean and Lorentzian spaces satisfying Δri = λiri; J. Geom., 96(2012), 17-29.

Bekkar, M., Senoussi, B., Translation surfaces in the 3-dimensional space satisfying ΔIIIri = λiri; J. Geom., 103(2012), 367-374.

Beneki, Chr., Kaimakamis, G., Papantoniou, B.J., Helicoidal surfaces in the three-dimensional Minkowski space, J. Math. Appl., 275(2002), 586-614.

Chen, B.-Y., Total mean curvature and submanifolds of finite type, World Scientific, Singapore, 1984.

Choi, M., Kim, Y.H., Characterization of the helicoid as ruled surfaces with pointwise 1-type Gauss map, Bull. Korean Math. Soc., 38(2001), 753-761.

Choi, M., Kim, Y.H., Liu, H., Yoon, D.W., Helicoidal surfaces and their Gauss map in Minkowski 3-Space, Bull. Korean Math. Soc., 47(2010), 859-881.

Dillen, F., Pas, J., Verstraelen, L., On surfaces of finite type in Euclidean 3-space, Kodai Math. J., 13(1990), 10-21.

Ferrandez, A., Garay, O.J., Lucas, P., On a certain class of conformally at Euclidean hypersurfaces, Proc. of the Conf, in Global Analysis and Global Differential Geometry, Berlin, 1990.

Guler, E., Yayh, Y., Hacisalihoglu, H.H., Bour's theorem on the Gauss map in 3-Euclidean space, Hacettepe Journal of Mathematics and Statistics, 39(2010), 515-525.

Ji, F., Hou, Z.H., Helicoidal surfaces under the cubic screw motion in Minkowski 3-space, J. Math. Anal. Appl., 318(2006), 634-647.

Kaimakamis, G., Papantoniou, B.J., Surfaces of revolution in the 3-dimensional Lorentz-Minkowski space satisfying ΔII~r = A~r, J. Geom., 81(2004), 81-92.

Kaimakamis, G., Papantoniou, B.J., Petoumenos, K., Surfaces of revolution in the 3-dimensional Lorentz-Minkowski space E31 satisfying ΔIII!r = A!r , Bull. Greek. Math. Soc., 50(2005), 76-90.

O'Neill, B., Semi-Riemannian geometry with applications to relativity, Academic Press, Waltham, 1983.

Senoussi, B., Bekkar, M., Helicoidal surfaces in the 3-dimensional Lorentz – Minkowski space E31 satisfying ΔIIr = Ar, Tsukuba J. Math., 37(2013), 339-353.

Stamatakis, S., Al-Zoubi, H., Surfaces of revolution satisfying ΔIIIx = Ax, J. Geom.

Graph., 14(2010), 181-186.

Takahashi, T., Minimal immersions of Riemannian manifolds, J. Math. Soc. Japan, 18(1966), 380-385.

Downloads

Published

2015-09-30

How to Cite

SENOUSSI, B., & BEKKAR, M. (2015). Helicoidal surfaces with Δ ᴶ ᵣ = Ar in 3-dimensional Euclidean space. Studia Universitatis Babeș-Bolyai Mathematica, 60(3), 437–448. Retrieved from https://studia.reviste.ubbcluj.ro/index.php/subbmathematica/article/view/5796

Issue

Section

Articles

Similar Articles

<< < 11 12 13 14 15 16 17 18 19 20 > >> 

You may also start an advanced similarity search for this article.