Second Hankel determinant for the class of Bazilevic functions

Authors

  • Krishna D. VAMSHEE Faculty of Mathematics, GIT, GITAM University Visakhapatnam 530045, Andhra Pradesh, India e-mail: vamsheekrishna1972@gmail.com https://orcid.org/0000-0002-3334-9079
  • T. RAMREDDY Faculty of Mathematics, Kakatiya University Warangal 506009, Telangana State, India e-mail: reddytr2@gmail.com

Keywords:

Analytic function, Bazilevic function, upper bound, second Hankel functional, positive real function, Toeplitz determinants.

Abstract

The objective of this paper is to obtain a sharp upper bound to the second Hankel determinant H2(2) for the function f when it belongs to the class of Bazilevic functions, using Toeplitz determinants. The result presented here include two known results as their special cases.

Mathematics Subject Classification (2010): 30C45, 30C50.

References

Abubaker, A., Darus, M., Hankel Determinant for a class of analytic functions involving a generalized linear differential operator, Int. J. Pure Appl. Math., 69(2011), no. 4, 429-435.

Ali, R.M., Coefficients of the inverse of strongly starlike functions, Bull. Malays. Math.Sci. Soc., (second series), 26(2003), no. 1, 63-71.

Bansal, D., Upper bound of second Hankel determinant for a new class of analytic functions, Appl. Math. Lett., 23(2013), 103-107.

Duren, P.L., Univalent functions, vol. 259 of Grundlehren der Mathematischen Wissenschaften, Springer, New York, USA, 1983.

Ehrenborg, R., The Hankel determinant of exponential polynomials, Amer. Math. Monthly, 107(2000), no. 6, 557-560.

Grenander, U., Szego, G., Toeplitz forms and their applications, Second edition, Chelsea Publishing Co., New York, 1984.

Janteng, A., Halim, S.A., Darus, M., Hankel Determinant for starlike and convex functions, Int. J. Math. Anal. (Ruse), 1(2007), no. 13, 619-625.

Janteng, A., Halim, S.A., Darus, M., Coefficient inequality for a function whose derivative has a positive real part, J. Inequal. Pure Appl. Math., 7(2006), no. 2, 1-5.

Krishna, V.D., RamReddy, T., Coefficient inequality for certain p- valent analytic functions, Rocky MT. J. Math., 44(6)(2014), 1941-1959.

Libera, R.J., Zlotkiewicz, E.J., Coefficient bounds for the inverse of a function with derivative in P, Proc. Amer. Math. Soc., 87(1983), no. 2, 251-257.

Mac Gregor, T.H., Functions whose derivative have a positive real part, Trans. Amer. Math. Soc., 104(1962), no. 3, 532-537.

Mishra, A.K., Gochhayat, P., Second Hankel determinant for a class of analytic functions defined by fractional derivative, Int. J. Math. Math. Sci., Article ID 153280, 2008, 1-10.

Noonan, J.W., Thomas, D.K., On the second Hankel determinant of areally mean p-valent functions, Trans. Amer. Math. Soc., 223(1976), no. 2, 337-346.

Pommerenke, Ch., Univalent functions, Vandenhoeck and Ruprecht, Gottingen, 1975.

Pommerenke, Ch., On the coefficients and Hankel determinants of univalent functions, J. Lond. Math. Soc., 41(1966), 111-122.

Singh, R., On Bazilevic functions, Proc. Amer. Math. Soc., 38(1973), no. 2, 261-271.

Simon, B., Orthogonal polynomials on the unit circle, Part 1. Classical theory, American Mathematical Society Colloquium Publications, 54, Part 1, American Mathematical Society, Providence, RI, 2005.

Verma, S., Gupta, S., Singh, S., Bounds of Hankel Determinant for a Class of Univalent functions, Int. J. Math. Sci., (2012), Article ID 147842, 6 pages.

Downloads

Published

2015-09-30

How to Cite

D. VAMSHEE , K., & RAMREDDY, T. (2015). Second Hankel determinant for the class of Bazilevic functions. Studia Universitatis Babeș-Bolyai Mathematica, 60(3), 413–420. Retrieved from https://studia.reviste.ubbcluj.ro/index.php/subbmathematica/article/view/5791

Issue

Section

Articles

Similar Articles

<< < 5 6 7 8 9 10 11 12 13 14 > >> 

You may also start an advanced similarity search for this article.