The generalization of Mastroianni operators using the Durrmeyer's method
Keywords:
Mastroianni operator, operator of Durrmeyer type, approximation properties.Abstract
In the present paper, we define a sequence of Durrmeyer's type operators associated with Mastroianni operators and introduce a new operator.
Mathematics Subject Classification (2010): 41A25.
References
Agratini, O., Della Vecchia, B., Mastroianni operators revisited, Facta Universitatis (Nis), Ser. Math. Inform., 19(2004), 53-63.
Govil, N. K., Gupta, V., Soybas, D., Certain new classes of Durrmeyer type operators, Applied Mathematics and Computation, 225(2013), 195-203.
Gupta, V., Combinations of integral operators, Applied Mathematics and Computation, 224(2013), 876-881.
Gupta, V., A new class of Durrmeyer operators, Advanced Studies in Contemporary Mathematics, 23(2013), no. 2, 219-224.
Mastroianni, G., Su un operatore lineare e positivo, Rend. Acc. Sc. Fis. Mat., Napoli, 46(4)(1979), 161-176.
Mastroianni, G., Su una classe di operatori e positivi, Rend. Acc. Sc. Fis. Mat., Napoli, 48(4)(1980), 217-235.
Shisha, O., Mond, B., The degree of convergence of linear positive operators, Proc. Nat. Acad. Sci. U.S.A., 60(1968), 1196-1200.
Srivastava, H. M., Gupta, V., A Certain Family of Summation-Integral Type Operators, Matematical and Computer Modelling, 37(2003), 1307-1315.
De Vore, R.A., Lorentz, G.G., Constructive Approximation, Springer, Berlin, 1993.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2015 Studia Universitatis Babeș-Bolyai Mathematica
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.