Construction and applications of Gaussian quadratures with nonclassical and exotic weight functions

Authors

Keywords:

Orthogonal polynomials, moments, recursion coefficients, Gaussian quadrature, weight function.

Abstract

In 1814 Carl Friedrich Gauß (1777–1855) developed his famous method of numerical integration which dramatically improves the earlier method of Isaac Newton (1643–1727) from 1676. Beside the some historical details in this survey, a formulation of this classical theory in modern terminology using theory of orthogonlity on real line, as well as the characterization, existence and uniqueness of these formulas, are presented. A special attention is devoted to the algorithms for constructing such quadrature formulas for nonclassical weight functions, their numerical stability and the corresponding software. Finally, some recent progress in this subject, as well as new important applications of these methods in several different directions (distributions in statistics and physics, summation of slowly convergent series, etc.) are presented.

Mathematics Subject Classification (2010): 33C47, 42C05, 41A55, 65D30, 65D32.

References

Cvetkovi´c, A.S., Milovanovi´c, G.V., The Mathematica Package “OrthogonalPolynomials”, Facta Univ. Ser. Math. Inform., 19(2004), 1736.

Davis, P.J., Spirals: from Theodorus to Chaos (With contributions by Walter Gautschi and Arieh Iserles), A.K. Peters, Wellesley, MA, 1993.

Davis, P.J., Rabinowitz, P., Methods of Numerical Integration (2nd edn.), Computer Science and Applied Mathematics, Academic Press Inc., Orlando, FL, 1984.

Gauss, C.F., Methodus nova integralium valores per approximationem inveniendi, Commentationes Societatis Regiae Scientarium G¨ottingensis Recentiores, 3(1814) 163–196.

Gautschi, W., Minimal solutions of three-term recurrence relations and orthogonal polynomials, Math. Comp., 36(1981), 547–554.

Gautschi, W., A survey of Gauss-Christoffel quadrature formulae, In: E.B. Christoffel –The Influence of his Work on Mathematics and the Physical Sciences (P.L. Butzer, F. Feher, eds.), Birkhauser, Basel, 1981, 72–147.

Gautschi, W., On generating orthogonal polynomials, SIAM J. Sci. Statist. Comput., 3(1982), 289–317.

Gautschi, W., Algorithm 726: ORTHPOL – a package of routines for generating orthogonal polynomials and Gauss-type quadrature rules, ACM Trans. Math. Software, 20(1994), 21–62.

Gautschi, W., Orthogonal polynomials: applications and computation, Acta Numerica, (1996), 45–119.

Gautschi, W., Orthogonal Polynomials: Computation and Approximation, Clarendon Press, Oxford, 2004.

Gautschi, W., Milovanovic, G.V., Gaussian quadrature involving Einstein and Fermi functions with an application to summation of series, Math. Comp., 44(1985), 177–190.

Golub, G.H., Welsch, J.H., Calculation of Gauss quadrature rule, Math. Comp., 23(1969), 221–230.

Jacobi, C.G.J., Uber Gaußs neue Methode, die Werte der Integrale naherungsweise zu finden, J. Reine Angew. Math., 30(1826), 301–308.

Mastroianni, G., Milovanovic, G.V., Interpolation Processes – Basic Theory and Applications, Springer Monographs in Mathematics, Springer – Verlag, Berlin – Heidelberg, 2008.

Mastroianni, G., Notarangelo, I., Milovanovic, G.V., Gaussian quadrature rules with an exponential weight on the real semiaxis, IMA J. Numer. Anal., 34(2014), 1654–1685.

Milovanovic, G.V., Summation of series and Gaussian quadratures, In: Approximation and Computation (R.V.M. Zahar, ed.), ISNM Vol. 119, Birkh¨auser Verlag, Basel–Boston–Berlin, 1994, 459–475.

Milovanovic, G.V., Summation of series and Gaussian quadratures, II, Numer. Algorithms, 10 (1995), 127-136.

Milovanovic, G.V., Summation processes and Gaussian quadratures, Sarajevo J. Math., 7(20)(2011), 185–200.

Milovanovic, G.V., Numerical quadratures and orthogonal polynomials, Stud. Univ. Babes-Bolyai Math., 56(2011), no. 2, 449–464.

Milovanovic, G.V., Quadrature processes and new applications, Bull. Cl. Sci. Math. Nat. Sci. Math., 38(2013), 83–120.

Milovanovic, G.V., Chapter 11: Orthogonal polynomials on the real line, In: Walter Gautschi: Selected Works and Commentaries, Volume 2 (C. Brezinski, A. Sameh, eds.), Birkhauser, Basel, 2014.

Milovanovic, G.V., Methods for computation of slowly convergent series and finite sums based on Gauss-Christoffel quadratures, Jaen J. Approx., 6(2014), 37–68.

Milovanovic, G.V., Cvetkovi´c, A.S., Special classes of orthogonal polynomials and corresponding quadratures of Gaussian type, Math. Balkanica, 26(2012), 169–184.

Milovanovic, G.V., Popovic, B. C, Stojanovic, V.S., An application of the ECF method and numerical integration in estimation of the stochastic volatility models, Facta Univ. Ser. Math. Inform., 29(2014), 295–312.

Rabinowitz, Ph., Richter, N., Perfectly symmetric two-dimensional integration formulas with minimal number of points, Math. Comp., 23(1969), 765–779.

Stoyanov, J., Stieltjes classes for moment-indeterminate probability distributions, Stochastic Methods and their Applications, J. Appl. Probab., 41A (2004), 281–294.

Stojanovic, V.S., Popovic, B.C., Milovanovic, G.V., The Split-SV Model, Comput. Statist. Data Anal. (2014) doi: 10.1016/j.csda.2014.08.010 (to appear).

Stroud, A.H., Secrest, D., Approximate integration formulas for certain spherically symmetric regions, Math. Comp., 17 (1963), 105–135.

Downloads

Published

2015-06-30

How to Cite

MILOVANOVIĆ, G. V. (2015). Construction and applications of Gaussian quadratures with nonclassical and exotic weight functions. Studia Universitatis Babeș-Bolyai Mathematica, 60(2), 211–233. Retrieved from https://studia.reviste.ubbcluj.ro/index.php/subbmathematica/article/view/5720

Issue

Section

Articles

Similar Articles

<< < 9 10 11 12 13 14 15 16 17 18 > >> 

You may also start an advanced similarity search for this article.