Eigenstructure of the genuine Beta operators of Lupaș and Mühlbach

Dedicated to Professor Gheorghe Coman on the occasion of his 80th anniversary

Authors

  • Heiner GONSKA University of Duisburg-Essen Faculty of Mathematics Duisburg, Germany e-mail: heiner.gonska@uni-due.de
  • Margareta HEILMANN University of Wuppertal School of Mathematics and Natural Sciences Wuppertal, Germany e-mail: heilmann@math.uni-wuppertal.de https://orcid.org/0000-0002-1283-7444
  • Ioan RAȘA Technical University Department of Mathematics Cluj-Napoca, Romania e-mail: Ioan.Rasa@math.utcluj.ro https://orcid.org/0000-0002-5206-030X

Keywords:

Genuine Beta operator, eigenstructure.

Abstract

The eigenstructure of genuine Beta operators is described, a limiting case of Beta-Jacobi operators. Its similarity to that of the classical Bernstein operators is emphasized. The significance of the mappings considered here comes, among others, from their role as a building block in genuine Bernstein-Durrmeyer operators.

Mathematics Subject Classification (2010): 65F15, 41A36.

References

Acar, T., Aral, A., Rasa, I., Power series of Beta operators, Appl. Math. Comput., 247(2014), 815-823.

Adell, J.A., German Badia, F., de la Cal, J., Beta-type operators preserve shape properties, Stochastic Processes and their Applications, 48(1993), 1-8.

Attalienti, A., Rasa, I., Total positivity: an application to positive linear operators and to their limiting semigroups, Rev. Anal. Numer. Theor. Approx., 36(2007), 51-66.

Cooper, Sh., Waldron, Sh., The eigenstructure of the Bernstein operator, J. Approx. Theory, 105(2000), 133-165.

Gonska, H., Heilmann, M., Lupas, A., Rasa, I., On the composition and decomposition of positive linear operators III: A non-trivial decomposition of the Bernstein operator, arXiv: 1204.2723 (2012).

Gonska, H., Rasa, I., Stanila, E.-D., Beta operators with Jacobi weights, In: Constructive Theory of Functions, Sozopol, 2013 (K. Ivanov, G. Nikolov and R. Uluchev, Eds.), 99-112, "Prof. Marin Drinov" Academic Publishing House, So a, 2014.

Gonska, H., Rusu, M., Stanila, E.-D., Inegalitati de tip Chebyshev-Grauss pentru operatorii Bernstein-Euler-Jacobi, Gazeta Matematica, Seria A, 33(62)(2015), no. 1-2, 16{28.

Heilmann, M., Rasa, I., On the decomposition of Bernstein operators, Numerical Functional Analysis and Optimization, 36(2015), no. 1, 72-85.

Lupas, A., Die Folge der Betaoperatoren, Dissertation, Universitat Stuttgart, 1972.

Muhlbach, G., Verallgemeinerungen der Bernstein- und der Lagrangepolynome. Bemerkungen zu einer Klasse linearer Polynomoperatoren von D.D. Stancu, Rev. Roumaine Math. Pures Appl., 15(1970), 1235-1252.

Muhlbach, G., Rekursionsformeln fur die zentralen Momente der Polya- und der Beta- Verteilung, Metrika, 19(1972), 171-177.

Stancu, D.D., Approximation of functions by a new class of linear polynomial operators, Rev. Roumaine Math. Pures Appl., 13(1968), 1173-1194.

Stancu, D.D., On a new positive linear polynomial operator, Proc. Japan Acad., 44(1968), 221-224.

Stancu, D.D., Use of probabilistic methods in the theory of uniform approximation of continuous functions, Rev. Roumaine Math. Pures Appl., 14(1969), 673-691.

Stanila, E.D., On Bernstein-Euler-Jacobi Operators, Dissertation, Universitat Duisburg-Essen, 2014.

Weisstein, E.W., Beta Function, from MathWorld{A Wolfram Web Resource, http://mathworld.wolfram.com/BetaFunction.html (as seen on July 13, 2016).

Downloads

Published

2016-09-30

How to Cite

GONSKA, H., HEILMANN, M., & RAȘA, I. (2016). Eigenstructure of the genuine Beta operators of Lupaș and Mühlbach: Dedicated to Professor Gheorghe Coman on the occasion of his 80th anniversary. Studia Universitatis Babeș-Bolyai Mathematica, 61(3), 383–388. Retrieved from https://studia.reviste.ubbcluj.ro/index.php/subbmathematica/article/view/5604

Issue

Section

Articles

Similar Articles

<< < 6 7 8 9 10 11 12 13 14 15 > >> 

You may also start an advanced similarity search for this article.