Eigenstructure of the genuine Beta operators of Lupaș and Mühlbach
Dedicated to Professor Gheorghe Coman on the occasion of his 80th anniversary
Keywords:
Genuine Beta operator, eigenstructure.Abstract
The eigenstructure of genuine Beta operators is described, a limiting case of Beta-Jacobi operators. Its similarity to that of the classical Bernstein operators is emphasized. The significance of the mappings considered here comes, among others, from their role as a building block in genuine Bernstein-Durrmeyer operators.
Mathematics Subject Classification (2010): 65F15, 41A36.
References
Acar, T., Aral, A., Rasa, I., Power series of Beta operators, Appl. Math. Comput., 247(2014), 815-823.
Adell, J.A., German Badia, F., de la Cal, J., Beta-type operators preserve shape properties, Stochastic Processes and their Applications, 48(1993), 1-8.
Attalienti, A., Rasa, I., Total positivity: an application to positive linear operators and to their limiting semigroups, Rev. Anal. Numer. Theor. Approx., 36(2007), 51-66.
Cooper, Sh., Waldron, Sh., The eigenstructure of the Bernstein operator, J. Approx. Theory, 105(2000), 133-165.
Gonska, H., Heilmann, M., Lupas, A., Rasa, I., On the composition and decomposition of positive linear operators III: A non-trivial decomposition of the Bernstein operator, arXiv: 1204.2723 (2012).
Gonska, H., Rasa, I., Stanila, E.-D., Beta operators with Jacobi weights, In: Constructive Theory of Functions, Sozopol, 2013 (K. Ivanov, G. Nikolov and R. Uluchev, Eds.), 99-112, "Prof. Marin Drinov" Academic Publishing House, So a, 2014.
Gonska, H., Rusu, M., Stanila, E.-D., Inegalitati de tip Chebyshev-Grauss pentru operatorii Bernstein-Euler-Jacobi, Gazeta Matematica, Seria A, 33(62)(2015), no. 1-2, 16{28.
Heilmann, M., Rasa, I., On the decomposition of Bernstein operators, Numerical Functional Analysis and Optimization, 36(2015), no. 1, 72-85.
Lupas, A., Die Folge der Betaoperatoren, Dissertation, Universitat Stuttgart, 1972.
Muhlbach, G., Verallgemeinerungen der Bernstein- und der Lagrangepolynome. Bemerkungen zu einer Klasse linearer Polynomoperatoren von D.D. Stancu, Rev. Roumaine Math. Pures Appl., 15(1970), 1235-1252.
Muhlbach, G., Rekursionsformeln fur die zentralen Momente der Polya- und der Beta- Verteilung, Metrika, 19(1972), 171-177.
Stancu, D.D., Approximation of functions by a new class of linear polynomial operators, Rev. Roumaine Math. Pures Appl., 13(1968), 1173-1194.
Stancu, D.D., On a new positive linear polynomial operator, Proc. Japan Acad., 44(1968), 221-224.
Stancu, D.D., Use of probabilistic methods in the theory of uniform approximation of continuous functions, Rev. Roumaine Math. Pures Appl., 14(1969), 673-691.
Stanila, E.D., On Bernstein-Euler-Jacobi Operators, Dissertation, Universitat Duisburg-Essen, 2014.
Weisstein, E.W., Beta Function, from MathWorld{A Wolfram Web Resource, http://mathworld.wolfram.com/BetaFunction.html (as seen on July 13, 2016).
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2016 Studia Universitatis Babeș-Bolyai Mathematica
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.