Korovkin type theorem in the space $C_{b}[0,\infty)$

Dedicated to Professor Gheorghe Coman on the occasion of his 80th anniversary

Authors

  • Zoltán FINTA Babes-Bolyai University Faculty of Mathematics and Computer Sciences 1, Kogalniceanu Street 400084 Cluj-Napoca, Romania e-mail: fzoltan@math.ubbcluj.ro

Keywords:

Korovkin theorem; modulus of continuity; $K$-functional; $q$-integers; $q$-Baskakov

Abstract

A Korovkin type theorem is established in the space $C_{b}[0,\infty)$ of all continuous and bounded functions on $[0,\infty)$ for a sequence of positive linear operators, the approximation error being estimated with the aid of the usual modulus of continuity. As applications we obtain quantitative results for $q$-Baskakov operators.

Mathematics Subject Classification (2010): 41A36, 41A25.

References

Andrews, G.E., Askey, R., Roy, R., Special Functions, Cambridge Univ. Press, Cambridge, 1999.

Aral, A., Gupta, V., On q-Baskakov type operators, Demonstratio Math., 42(2009), no. 1, 107-120.

Aral, A., Gupta, V., Generalized q-Baskakov operators, Math. Slovaca, 61(2011), no. 4, 619-634.

Baskakov, V.A., An example of a sequence of linear positive operators in the space of continuous functions, Dokl. Akad. Nauk SSSR, 113(1957), 249-251 (in Russian).

DeVore, R.A., Lorentz, G.G., Constructive Approximation, Springer, Berlin, 1993.

Finta, Z., Note on a Korovkin-type theorem, J. Math. Anal. Appl., 415(2014), 750-759.

Finta, Z., Korovkin type theorem for sequences of operators depending on a parameter, Demonstratio Math., 48(2015), no. 3, 381-403.

Gadjiev, A.D., A problem on the convergence of a sequence of positive linear operators on unbounded sets, and theorems that are analogous to P.P. Korovkin's theorem, Dokl. Akad. Nauk SSSR, 218(1974), 1001-1004 (in Russian); English translation: Soviet Math. Dokl., 15(1974), no. 5, 1433-1436.

Gadjiev, A.D., Theorems of the type of P.P. Korovkin's theorems, Mat. Zametki, 20(1976), no. 5, 781-786 (in Russian); English translation: Soviet Math. Dokl., 20(1976), no. 5-6, 995-998.

Il'inskii, A., Ostrovska, S., Convergence of generalized Bernstein polynomials, J. Approx. Theory, 116(2002), 100-112.

Kac, V., Cheung, P., Quantum Calculus, Springer, New York, 2002.

Phillips, G.M., Bernstein polynomials based on the q-integers, Ann. Numer. Math., 4(1997), 511-518.

Radu, C., On statistical approximation of a general class of positive linear operators extended in q-calculus, Appl. Math. Comput., 215(2009), 2317-2325.

Wang, H., Korovkin-type theorem and application, J. Approx. Theory, 132(2005), 258-264.

Downloads

Published

2016-09-30

How to Cite

FINTA, Z. (2016). Korovkin type theorem in the space $C_{b}[0,\infty)$: Dedicated to Professor Gheorghe Coman on the occasion of his 80th anniversary. Studia Universitatis Babeș-Bolyai Mathematica, 61(3), 321–329. Retrieved from https://studia.reviste.ubbcluj.ro/index.php/subbmathematica/article/view/5582

Issue

Section

Articles

Similar Articles

<< < 1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.