Superdense unbounded divergence of a class of interpolatory product quadrature formulas
Dedicated to Professor Gheorghe Coman on the occasion of his 80th anniversary
Keywords:
Superdense set, unbounded divergence, product quadrature formulas, Dini-Lipschitz convergence.Abstract
Abstract. The aim of this paper is to highlight the superdense unbounded divergence of a class of product quadrature formulas of interpolatory type on Jacobi nodes, associated to the Banach space of all real continuous functions defined on [-1; 1], and to a Banach space of measurable and essentially bounded functions g : [-1; 1] ! R. Some aspects regarding the convergence of these formulas are pointed out, too.
Mathematics Subject Classification (2010): 41A10, 65D32.
References
Brass, H., Petras, K., Quadrature Theory. The theory of Numerical Integration on a Compact Interval, Amer. Math. Soc., Providence, Rhode Island, 2011.
Cheney, E.W., Light, W.A., A Course on Approximation Theory, Amer. Math. Soc., Providence, Rhode Island, 2009.
Cobzas, S., Muntean, I., Condensation of singularities and divergence results in approximation theory, J. Approx. Theory, 31(1981), 138-153.
Ehrich, S., On product integration with Gauss-Kronrod nodes, SIAM J. Numer. Anal., 35(1998), 78-92.
Mitrea, A.I., On the dense divergence of the product quadrature formulas of interpolatory type, J. Math. Anal. Appl., 433(2016), 1409-1414.
Natanson, G.I., Two-sided estimates for Lebesgue functions of Lagrange interpolation processes based on Jacobi nodes (Russian), Izv. Vyss, Ucehn, Zaved (Mathematica), 11(1967), 67-74.
Rabinowitz, P., Smith, W.E., Interpolatory product integration for Riemann-integrable functions, J. Austral. Math. Soc. Ser. B, 29(1987), 195-202.
Sloan, I.H., Smith, W.E., Properties of interpolatory product integration rules, SIAM J. Numer. Anal., 19(1982), 427-442.
Vertesi, P., Note on mean convergence of Lagrange parabolas, J. Approx. Theory, 28(1980), 30-35.
Szego, G., Orthogonal Polynomials, Amer. Math. Soc., Providence, Rhode Island, 2003.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2016 Studia Universitatis Babeș-Bolyai Mathematica
![Creative Commons License](http://i.creativecommons.org/l/by-nc-nd/4.0/88x31.png)
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.