Some classes of surfaces generated by Nielson and Marshall type operators on the triangle with one curved side
Dedicated to Professor Gheorghe Coman on the occasion of his 80th anniversary
Keywords:
Blending interpolation, Hermite, Nielson and Marshall interpolation operators, surfaces generation.Abstract
We construct some classes of surfaces which satisfy some given conditions, using some Hermite, Nielson and Marshall type interpolation operators defined on a triangle with one curved side.
Mathematics Subject Classification (2010): 41A05, 41A36, 65D05.
References
Barnhill, R.E., Blending function interpolation: a survey and some new results, Numerishe Methoden der Approximationstheorie, L. Collatz et al. (Eds.), Vol. 30, Birkhauser-Verlag, Basel, 1976, 43-89.
Barnhill, R.E., Representation and approximation of surfaces, Mathematical Software III, J.R. Rice (Ed.), Academic Press, New-York, 1977, 68-119.
Barnhill, R.E., Birkho, G., Gordon, W.J., Smooth interpolation in triangles, J. Approx. Theory, 8(1973), 114-128.
Barnhill, R.E., Gregory, J.A., Polynomial interpolation to boundary data on triangles, Math. Comp., 29(1975), no. 131, 726-735.
Barnhill, R.E., Gregory, J.A., Compatible smooth interpolation in triangles, J. Approx. Theory, 15(1975), 214-225.
Barnhill, R.E., Mans_eld, L., Error bounds for smooth interpolation in triangles, J. Approx. Theory, 11(1974), 306-318.
Birkhoff, G., Interpolation to boundary data in triangles, J. Math. Anal. Appl., 42(1973), 474-484.
Blaga, P., Catinas, T., Coman, Gh., Bernstein-type operators on tetrahedrons, Stud. Univ. Babes-Bolyai Math., 54(2009), no. 4, 3-19.
Blaga, P., Catinas, T., Coman, Gh., Bernstein-type operators on a square with one and two curved sides, Stud. Univ. Babes-Bolyai Math., 55(2010), no. 3, 51-67
Blaga, P., Catinas, T., Coman, Gh., Bernstein-type operators on triangle with all curved sides, Appl. Math. Comput., 218(2011), 3072-3082.
Blaga, P., Catinas, T., Coman, Gh., Bernstein-type operators on triangle with one curved side, Mediterr. J. Math., 9(2012), no. 4, 843-855.
Bohmer, K., Coman, Gh., Blending interpolation schemes on triangle with error bounds, Lecture Notes in Mathematics, no. 571, Springer-Verlag, Berlin, 1977, 14-37.
Catinas, T., Extension of some generalized Hermite-type interpolation operators to the triangle with one curved side, 2016, submitted.
Catinas, T., Extension of some particular interpolation operators to a triangle with one curved side, 2016, submitted.
Catinas, T., Blaga, P., Coman, Gh., Surfaces generation by blending interpolation on a triangle with one curved side, Results in Mathematics, 64(2013) no. 3-4, 343-355.
Coman, Gh., Catinas, T., Interpolation operators on a tetrahedron with three curved sides, Calcolo, 47(2010), no. 2, 113-128.
Coman, Gh., Catinas, T., Interpolation operators on a triangle with one curved side, BIT Numerical Mathematics, 50(2010), no. 2, 243-267.
Coman, Gh., Gansca, I., Blending approximation with applications in constructions, Buletinul Stiintic al Institutului Politehnic Cluj-Napoca, 24(1981), 35-40.
Coman, Gh., Gansca, I., Some practical application of blending approximation II, Itinerant Seminar on Functional Equations, Approximation and Convexity, Cluj-Napoca, 1986.
Coman, Gh., Gansca, I., Tambulea, L., Some new roof-surfaces generated by blending interpolation technique, Stud. Univ. Babes-Bolyai Math., 36(1991), no. 1, 119-130.
Coman, Gh. I. Gansca, I., Tambulea, L., Surfaces generated by blending interpolation, Stud. Univ. Babe_s-Bolyai Math., 38(1993), no. 3, 39-48.
Gordon, W.J., Distributive lattices and approximation of multivariate functions, Proc. Symp. Approximation with Special Emphasis on Spline Functions, (Ed. I.J. Schoenberg), Madison, Wisc., 1969, 223|277.
Gordon, W.J., Wixom, J.A., Pseudo-harmonic interpolation on convex domains, SIAM J. Numer. Anal., 11(1974), no. 5, 909-933.
Gregory, J.A., A blending function interpolant for triangles, Multivariate Approximation, D.C. Handscomb (Ed.), Academic Press, London, 1978, 279-287.
Marshall, J.A., Mitchell, A.R., Blending interpolants in the finite element method, Inter. J. Numer. Meth. Engineering, 12(1978), 77-83.
Nielson, G.M., The side-vertex method for interpolation in triangles, J. Approx. Theory, 25(1979), 318-336.
Nielson, G.M., Minimum norm interpolation in triangles, SIAM J. Numer. Anal., 17(1980), no. 1, 44-62.
Nielson, G.M., Thomas, D.H., Wixom, J.A., Interpolation in triangles, Bull. Austral. Math. Soc., 20(1979), no. 1, 115-130.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2016 Studia Universitatis Babeș-Bolyai Mathematica
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.