Weingarten tube-like surfaces in Euclidean 3-space
Keywords:
Tube-like surface, Gaussian curvature, mean curvature, second Gaussian curvature, second mean curvature, Weingarten surfaces, linear Weingarten surfaces, Euclidean 3-space.Abstract
In this paper, we study a special kind of tube surfaces, so-called tubelike surface in 3-dimensional Euclidean space E3. It is generated by sweeping a space curve along another central space curve. This study investigates a tubelike surface satisfying some equations in terms of the Gaussian curvature, the mean curvature, the second Gaussian curvature and the second mean curvature. Furthermore, some important theorems are obtained. Finally, an example of tubelike surface is used to demonstrate our theoretical results and graphed.
Mathematics Subject Classification (2010): 53A04, 56B34, 53B25.
References
Abdel-Aziz, H.S., Khalifa Saad, M., Weingarten timelike tube surfaces around a spacelike curve, Int. J. of Math. Analysis, 25(5)(2011), 1225-1236.
Abdel-Aziz, H.S., Khalifa Saad, M., Kiziltug, S., Parallel Surfaces of Weingarten Type in Minkowski 3-Space, Int. Math. Forum, 4(7)(2012), 2293-2302.
Baikoussis, C., Koufogiorgos, T., On the inner curvature of the second fundamental form of helicoidal surfaces, Arch. Math., 68(2)(1997), 169-176.
Dillen, F., Kuhnel, W., Ruled Weingarten surfaces in a Minkowski 3-space, Manuscripta Math. 98(1999), 307-320.
do Carmo, M., Differential geometry of curves and surfaces, Prentice-Hall, Englewood Cliffs, 1976.
Dogan, F., A note on tubes, Int. J. of Phys. and Math. Sciences, 3(1)(2013), 98-105.
Kimm, H.Y., Yoon, D.W., Classification of ruled surfaces in a Minkowski 3-space, J. Geom. Phys., 49(2004), 89-100.
Kim, Y.H., Yoon, D.W., Weingarten quadric surfaces in a Euclidean 3-space, Turk. J. Math., 35(2011), 479-485.
Kuhnel, W., Ruled W-surfaces, Arch. Math. 62(1994), 475-480.
Lopez, R., On linear Weingarten surfaces, International J. Math., 19(2008), 439-448.
Lopez, R., Special Weingarten surfaces foliated by circles, Monatsh. Math. 154(2008), 289-302.
Lopez, R., Parabolic Weingarten surfaces in hyperbolic space, Publ. Math. Debrecen, 74(2009), 59-80.
Munteanu, M.I., Nistor, A.I., Polynomial translation Weingarten surfaces in 3-dimensional Euclidean space, Differential geometry, 316-320, Worled Sci. Publ., Hackensack, NJ, 2009.
O'Neill, B., Elementary Differential Geometry, Academic press, New York, 1966.
Ro, J., Yoon, D.W., Tubes of Weingarten types in a Euclidean 3-space, J. Chungcheong Math. Soc., 22(3)(2009), 359-366.
Sodsiri, W., Ruled surfaces of Weingarten type in Minkowski 3-space, PhD. thesis, Katholieke Universiteit Leuven, Belgium, 2005.
Struik, D.J., Lectures on classical differential geometry, Addison-Wesley Publishing Company, Inc., 1961.
Tuncer, Y., Yoon, D.W., Karacan, M.K., Weingarten and linear Weingarten type tubular surfaces in E3, Mathematical Problems in Engineering, Article ID 191849, 2011.
Van-Brunt, Grant, K., Potential applications of Weingarten surfaces in CAGD, Part I: Weingarten surfaces and surface shape investigation, Comput. Aided Geom. Des., 13(1996), 569-582.
Verpoort, S., The Geometry of the second fundamental form: Curvature properties and variational aspects, PhD. Thesis, Katholieke Universiteit Leuven, Belgium, 2008.
Weingarten, J.,Ueber eine Klasse auf einander abwickelbarer Flaachen, J. Reine Angew. Math., 59(1861), 382-393.
Weingarten, J.,Ueber die Flachen derer Normalen eine gegebene Flache beruhren, J. Reine Angew. Math., 62(1863), 61-63.
Yilmaz, T., Murat, K.K., Differential Geometry of three dimensions, Syndic of Cambridge University Press, 1981.
Yoon, D.W., On non-developable ruled surfaces in Euclidean 3-spaces, Indian J. Pure Appl. Math., 38(2007), 281-289.
Yoon, D.W., Some properties of the helicoid as ruled surfaces, JP J. Geom. Topology, 2(2)(2002), 141-147.
Yoon, D.W., Jun, J.S., Non-degenerate quadric surfaces in Euclidean 3-space, Int. J. Math. Anal., 6(52)(2012), 2555-2562.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2016 Studia Universitatis Babeș-Bolyai Mathematica
![Creative Commons License](http://i.creativecommons.org/l/by-nc-nd/4.0/88x31.png)
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.