Explicit limit cycles of a cubic polynomial differential systems
Keywords:
Planar polynomial differential system, algebraic limit cycle, non-algebraic limit cycle.Abstract
In this paper, we determine sufficient conditions for a cubic polynomial differential system to possess an algebraic, non-algebraic limit cycles, explicitly given. Concrete examples exhibiting the applicability of our result is introduced.
Mathematics Subject Classification (2010): 34A05, 34C05, 34CO7, 34C25.
References
Bendjeddou, A., Cheurfa, R., On the exact limit cycle for some class of planar differential systems, Nonlinear Di. Eq. Appl., 14(2007), 491-498.
Bendjeddou, A., Cheurfa, R., Cubic and quartic planar differential systems with exact algebraic limit cycles, Elect. J. Di. Eq., 15(2011), 1-12.
Benterki, R., Llibre, J., Polynomial differential systems with explicit non-algebraic limit cycles, Elect. J. Di_. Eq., 78(2012), 1-6.
Dumortier, F., Llibre, J., Art_es, J., Qualitative Theory of Planar Differential Systems, Springer, Berlin, 2006.
Gasull, A., Giacomini, H., Torregrosa, J., Explicit non-algebraic limit cycles for polynomial systems, J. Comput. Appl. Math., 200(2007), 448-457.
Giacominiy, H., Llibre, J., Viano, M., On the nonexistence existence and uniquencess of limit cycles, Nonlinearity, 9(1996), 501{516.
Gine, J., Grau, M., Coexistence of algebraic and non-algebraic limit cycles, explicitly given, using Riccati equations, Nonlinearity, 19(2006), 1939-1950.
Llibre, J., Zhao, Y., Algebraic Limit Cycles in Polynomial Systems of Differential Equations, J. Phys. A, Math. Theor., 40(2007), 14207-14222.
Odani, K., The limit cycle of the van der Pol equation is not algebraic, J. Di. Eq., 115(1995), 146-152.
Perko, L., Differential equations and dynamical systems, Third Edition, Texts in Applied Mathematics, 7, Springer-Verlag, New York, 2001.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2016 Studia Universitatis Babeș-Bolyai Mathematica
![Creative Commons License](http://i.creativecommons.org/l/by-nc-nd/4.0/88x31.png)
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.