Faber polynomial coefficient bounds for a subclass of bi-univalent functions

Authors

Keywords:

Analytic and univalent functions, bi-univalent functions, Faber polynomials.

Abstract

In this work, considering a general subclass of bi-univalent functions and using the Faber polynomials, we obtain coefficient expansions for functions in this class. In certain cases, our estimates improve some of those existing coefficient bounds.

Mathematics Subject Classification (2010): 30C45, 30C50.

References

Airault, H., Symmetric sums associated to the factorization of Grunsky coefficients, in Conference, Groups and Symmetries, Montreal, Canada, 2007.

Airault, H., Remarks on Faber polynomials, Int. Math. Forum, 3(2008), no. 9, 449-456.

Airault, H., Bouali, H., Differential calculus on the Faber polynomials, Bulletin des Sciences Mathematiques, 130(2006), no. 3, 179-222.

Airault, H., Ren, J., An algebra of Differential operators and generating functions on the set of univalent functions, Bulletin des Sciences Mathematiques, 126(2002), no. 5, 343-367.

Altinkaya, S., Yalcin, S., Initial coefficient bounds for a general class of bi-univalent functions, International Journal of Analysis, Article ID 867871, (2014), 4 pp.

Altinkaya, S., Yalcin, S., Coefficient bounds for a subclass of bi-univalent functions, TWMS Journal of Pure and Applied Mathematics, 6(2015), no. 2, 180-185.

Brannan, D.A., Clunie, J., Aspects of contemporary complex analysis, Proceedings of the NATO Advanced Study Instute Held at University of Durham, New York: Academic Press, 1979.

Brannan, D.A., Taha, T.S., On some classes of bi-univalent functions, Stud. Univ. Babes-Bolyai Math., 31(1986), no. 2, 70-77.

Bulut, S., Faber polynomial coefficient estimates for a comprehensive subclass of analytic bi-univalent functions, C.R. Acad. Sci. Paris, Ser. I, 352(2014), no. 2, 479-484.

Crisan, O., Coefficient estimates certain subclasses of bi-univalent functions, Gen. Math. Notes, 16(2013), no. 2, 93-1002.

Duren, P.L., Univalent Functions, Grundlehren der Mathematischen Wissenschaften, Springer, New York, USA, 259(1983).

Faber, G., Uber polynomische entwickelungen, Math. Ann., 57(1903), no. 3, 1569-1573.

Frasin, B.A., Aouf, M.K., New subclasses of bi-univalent functions, Applied Mathematics Letters, 24(2011), 1569-1573.

Grunsky, H., Koe_zientenbedingungen fur schlict abbildende meromorphe funktionen, Math. Zeit., 45(1939), 29-61.

Hamidi, S.G., Halim, S.A., Jahangiri, J.M., Faber polynomial coefficient estimates for meromorphic bi-starlike functions, International Journal of Mathematics and Mathematical Sciences, 2013, Article ID 498159, 4 p.

Hamidi, S.G., Jahangiri, J.M., Faber polynomial coefficient estimates for analytic bicloseto-convex functions, C.R. Acad. Sci. Paris, Ser.I, 352(2014), no. 1, 17-20.

Jahangiri, J.M., Hamidi, S.G., Coefficient estimates for certain classes of bi-univalent functions, International Journal of Mathematics and Mathematical Sciences, 2013, Article ID 190560, 4 p.

Keerthi, B.S., Raja, B., Coefficient inequality for certain new subclasses of analytic biunivalent functions, Theoretical Mathematics and Applications, 3(2013), no. 1, 1-10.

Li, X.F., Wang, A.P., Two new subclasses of bi-univalent functions, Internat. Math. Forum, 7(2012), 1495-1504.

Lewin, M., On a coefficient problem for bi-univalent functions, Proc. Amer. Math. Soc., 18(1967), 63-68.

Magesh, N., Yamini, J., Coefficient bounds for a certain subclass of bi-univalent functions, International Mathematical Forum, 8(2013), no. 27, 1337-1344.

Netanyahu, E., The minimal distance of the image boundary from the origin and the second coefficient of a univalent function in jzj < 1; Archive for Rational Mechanics and Analysis, 32(1969), 100-112.

Prema, S., Keerthi, B.S., Coefficient bounds for certain subclasses of analytic functions, J. Math. Anal., 4(2013), no. 1, 22-27.

Porwal, S., Darus, M., On a new subclass of bi-univalent functions, J. Egypt. Math. Soc., 21(2013), no. 3, 190-193.

Schier, M., A method of variation within the family of simple functions, Proc. London Math. Soc., 44(1938), no. 2, 432-449.

Schaeer, A.C., Spencer, D.C., The coefficients of schlict functions, Duke Math. J., 10(1943), 611-635.

Srivastava, H.M., Mishra, A.K., Gochhayat, P., Certain subclasses of analytic and biunivalent functions, Applied Mathematics Letters, 23(2010), no. 10, 1188-1192.

Srivastava, H.M., Bulut, S., Caglar, M., Yagmur, N., Coefficient estimates for a general subclass of analytic and bi-univalent functions, Filomat, 27(2013), no. 5, 831-842.

Xu, Q.H., Gui, Y.C., Srivastava, H.M., Coefficient estimates for a certain subclass of analytic and bi-univalent functions, Applied Mathematics Letters, 25(2012), 990-994.

Downloads

Published

2016-03-30

How to Cite

ALTINKAYA, Şahsene, & YALÇIN, S. (2016). Faber polynomial coefficient bounds for a subclass of bi-univalent functions. Studia Universitatis Babeș-Bolyai Mathematica, 61(1), 37–44. Retrieved from https://studia.reviste.ubbcluj.ro/index.php/subbmathematica/article/view/5508

Issue

Section

Articles

Similar Articles

<< < 10 11 12 13 14 15 16 17 18 19 > >> 

You may also start an advanced similarity search for this article.