New fractional estimates of Hermite-Hadamard inequalities and applications to means
Keywords:
Convex functions, h-convex, fractional integrals, Hermite-Hadamard inequality.Abstract
The main objective of this paper is to obtain some new fractional estimates of Hermite-Hadamard type inequalities via h-convex functions. A new fractional integral identity for three times differentiable function is established.
This result plays an important role in the development of new results. Several new special cases are also discussed. Some applications to means of real numbers are also discussed.
Mathematics Subject Classification (2010): 26A33, 26D15, 26A51.
References
Breckner, W.W., Stetigkeitsaussagen fur eine Klasse verallgemeinerter convexer funktionen in topologischen linearen Raumen, Publ. Inst. Math., 23(1978), 13-20.
Cristescu, G., Improved integral inequalities for products of convex functions, J. Ineq. Pure Appl. Math., 6(2)(2005).
Dragomir, S.S., Inequalities of Hermite-Hadamard type for h-convex functions on linear spaces, RGMIA Research Report Collection, 16(2013), Article 72.
Dragomir, S.S., Pearce, C.E.M., Selected topics on Hermite-Hadamard inequalities and applications, Victoria University, Australia, 2000.
Dragomir, S.S., Pe_cari_c, J., Persson, L.E., Some inequalities of Hadamard type, Soochow J. Math., 21(1995), 335-341.
Godunova, E.K., Levin, V.I., Neravenstva dlja funkcii sirokogo klassa soderzascego vypuklye monotonnye i nekotorye drugie vidy funkii, Vycislitel. Mat. i. Fiz. Mezvuzov. Sb. Nauc. MGPI Moskva, (1985), 138142 (in Russian).
Katugampola, U.N., A new approach to generalized fractional derivatives, Bulletin of Math. Anal. Appl., 6(4)(2014), 1-15.
Katugampola, U.N., Mellin transforms of generalized fractional integrals and derivatives, Appl. Math. Comput., 257(2015), 566-580.
Kilbas, A., Srivastava, H.M., Trujillo, J.J., Theory and applications of fractional differential equations, Elsevier, Amsterdam, Netherlands, 2006.
Khattri, S.K., Three proofs of the inequality … (equation) Amer. Math. Monthly, 117(3)(2010), 273-277.
Noor, M.A., Awan, M.U., Some integral inequalities for two kinds of convexities via fractional integrals, Trans. J. Math. Mech. 5(2)(2013), 129-136.
Noor, M.A., Cristescu, G., Awan, M.U., Generalized fractional Hermite-Hadamard inequalities for twice differentiable s-convex functions, Filomat, 29(4)(2015), 807-815.
Noor, M.A., Noor, K.I., Awan, M.U., Hermite-Hadamard inequalities for relative semiconvex functions and applications, Filomat, 28(2)(2014), 221-230.
Noor, M.A., Noor, K.I., Awan, M.U., Fractional Hermite-Hadmard inequalities for convex functions and applications, Tbilisi J. Math., 8(2)(2015), 103-113.
Ozdemir, M.E., Kavurmaci, H., Yildiz, C., Fractional integral inequalities via s-convex functions, available online at: arXiv:1201.4915v1, (2012).
Park, J., Some inequalities of Hermite-Hadamard type via differentiable are (s;m)-convex mappings, Far East J. Math. Sci., 52(2)(2011), 209-221.
Park, J., On the left side inequality of Hermite-Hadamard inequality for differentiable (_;m)-convex mappings, Far East J. Math. Sci., 58(2011)(2), 179-191.
Park, J., Hermite-Hadamard-like type inequalities for n-times differentiable functions which are m-convex and s-convex in the second sense, Int. J. Math. Anal., 8(25)(2014), 1187-1200.
Sarikaya, M.Z., Set, E., Yaldiz, H., Basak, N., Hermite-Hadamard's inequalities for fractional integrals and related fractional inequalities, Math. Comp. Modelling, 57(2013), 2403-2407.
Shuang, Y., Yin, H.P., Qi, F., Hermite-Hadamard type integral inequalities for geometric arithmetically s-convex functions, Analysis, 33(2013), 197208.
Varosanec, S., On h-convexity, J. Math. Anal. Appl., 326(2007), 303-311.
Wang, J., Li, X., Feckan, M., Zhou, Y., Hermite-Hadamard-type inequalities for Riemann-Liouville fractional integrals via two kinds of convexity, Appl. Anal., 2012, http://dxdoi.org/10.1080/00036811.2012.727986.
Xi, B.Y., Qi, F., Some integral inequalities of Hermite-Hadamard type for convex functions with applications to means, J. Func. Spaces Appl., 2012(2012), Article ID 980438.
Xi, B.Y., Wang, S.H., Qi, F., Some inequalities of Hermite-Hadamard type for functions whose third derivatives are P-convex, Appl. Math., 3(2012), 1898-1902.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2016 Studia Universitatis Babeș-Bolyai Mathematica
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.