Deficient quartic spline of Marsden type with minimal deviation by the data polygon

Authors

  • Diana CIURILĂ (POPESCU) University of Oradea, Romania e-mail: curila_diana@yahoo.com

DOI:

https://doi.org/10.24193/subbmath.2023.1.15

Keywords:

Marsden type deficient quartic splines, optimal properties, minimal quadratic oscillation in average.

Abstract

In this work we construct the deficient quartic spline with the knots following the Marsden’s scheme and prove the existence and uniqueness of the deficient quartic spline with minimal deviation by the data polygon. The interpolation error estimate of the obtained quartic spline is given in terms of the modulus of continuity. A numerical example is included in order to illustrate the geometrical behaviour of the quartic spline with minimal quadratic oscillation in average in comparison with the two times continuous differentiable deficient quartic spline.

Mathematics Subject Classification (2010): 65D07, 65D10.

Received 12 July 2020; Revised 01 April 2021. Published Online: 2023-03-20. Published Print: 2023-04-30

Author Biography

Diana CIURILĂ (POPESCU), University of Oradea, Romania e-mail: curila_diana@yahoo.com

University of Oradea, Department of Mathematics and Informatics, 1, Universității Street, 410087 Oradea, Romania e-mail: curila_diana@yahoo.com

References

Ahlberg, J.H., Nilson, E.H., Walsh, J.L., The Theory of Splines and Their Applications, Academic Press, New York, London, 1967.

Bica, A.M., Fitting data using optimal Hermite type cubic interpolating splines, Appl. Math. Lett., 25(2012), 2047-2051.

Blaga, P., Micula, G., Natural spline functions of even degree, Studia Univ. Babeș-Bolyai, Mathematica, 38(1993), no. 2, 31-40.

Burmeister, W., Heß, W., Schmidt, J.W., Convex splines interpolants with minimal curvature, Computing, 35(1985), 219-229.

Floater, M., On the deviation of a parametric cubic spline interpolant from its data polygon, Comput. Aided Geom. Des., 23(2008), 148-156.

Han, X., Guo, X., Cubic Hermite interpolation with minimal derivative oscillation, J. Comput. Appl. Math., 33(2018), 82-87.

Howell, G., Varma, A.K., Best error bounds for quartic spline interpolation, J. Approx. Theory, 58(1989), 58-67.

Kobza, J., Cubic splines with minimal norm, Appl. Math., 47(2002), 285-295.

Kobza, J., Quartic splines with minimal norms, Acta Univ. Palacki. Olomuc, Fac. Res. Nat., Mathematica, 40(2001), 103-124.

Marsden, M., Quadratic spline interpolation, Bull. Amer. Math. Soc., 80(1974), no. 5, 903-906.

Micula, G., Micula, S., Handbook of Splines, Mathematics and Its Applications, vol.462, Kluwer Academic Publishers, Dordrecht, 1999.

Micula, Gh., Santi, E., Cimoroni, M.G., A class of even degree splines obtained through a minimum condition, Studia Univ. Babeș-Bolyai, Mathematica, 48(2003), no. 3, 93-104.

Volkov, Yu. S., Best error bounds for the derivative of a quartic interpolation spline, (in Russian), Mat. Trud., 1(1998), no. 2, 68-78.

Downloads

Published

2023-03-20

How to Cite

CIURILĂ (POPESCU), D. (2023). Deficient quartic spline of Marsden type with minimal deviation by the data polygon. Studia Universitatis Babeș-Bolyai Mathematica, 68(1), 203–211. https://doi.org/10.24193/subbmath.2023.1.15

Issue

Section

Articles

Similar Articles

<< < 1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.