Generalized de Jonqui`eres divisors on generic curves

Authors

  • Gavril FARKAS Humboldt-Universit¨at zu Berlin, Institut Fu¨r Mathematik, Berlin, Germany e-mail: farkas@math.hu-berlin.de

DOI:

https://doi.org/10.24193/subbmath.2023.1.01

Keywords:

Algebraic curves, de Jonqui`eres divisors, moduli space of curves.

Abstract

The classical de Jonqui`eres and MacDonald formulas describe the virtual number of divisors with prescribed multiplicities in a linear system on an algebraic curve. We discuss the enumerative validity of the de Jonqui`eres formulas for a general curve of genus g.

Mathematics Subject Classification (2010): 14H10, 14H51.

Received 14 October 2022; Revised 05 February 2023. Published Online: 2023-03-20. Published Print: 2023-04-30

Author Biography

Gavril FARKAS, Humboldt-Universit¨at zu Berlin, Institut Fu¨r Mathematik, Berlin, Germany e-mail: farkas@math.hu-berlin.de

Humboldt-Universit¨at zu Berlin, Institut Fu¨r Mathematik, Unter den Linden 6, 10099 Berlin, Germany e-mail: farkas@math.hu-berlin.de

References

Allen, E., Su alcuni caratteri di una serie algebrica, e la formula di de Jonquières per serie qualsiasi, Rendiconti Circolo Mat. Palermo, 37(1919), 345–370.

Aprodu, M., Farkas, G., Koszul cohomology and applications to moduli, Clay Mathematics Proceedings, 14(2011), 25–50.

Arbarello, E., Cornalba, M., Griffiths, P., Harris, J., Geometry of Algebraic Curves, Grundlehren der Math. Wiss., 267(1985), Springer Verlag.

Bainbridge, M., Chen, D., Gendron, Q., Grushevsky, S., Möller, M., Compactification of strata of abelian differentials, Duke Math. Journal, 167(2018), 2347–2416.

Baker, H., Principles of Geometry, Volume VI, Introduction to the Theory of Algebraic Surfaces and Higher Loci, Cambridge University Press 1933.

Blanc, J., Lamy, S., Weak Fano threefolds obtained by blowing-up a space curve and construction of Sarkisov links, Proceedings London Math. Soc., 105(2012), 1047–1075.

Bolognesi, M., Pirola, P., Osculating spaces and diophantine equations (with an Appendix by Pietro Corvaja and Umberto Zannier), Math. Nachrichten, 284(2011), 960–972.

Coolidge, J., A Treatise on Algebraic Plane Curves, Dover Edition, 1959.

Coppens, M., Martens, G., Secant spaces and Clifford’s theorem, Compositio Math., 78(1991), 193–212.

Cotterill, E., Effective divisors on Mg associated to curves with exceptional secant planes, Manuscripta Math., 138(2012), 171–202.

de Jonquières, E., Mémoire sur les contacts multiples d’ordre quleconque des courbes de degré r, qui satisfont à des conditions donnés, avec une courbe fixe du degré m, J. Reine Angew. Math., 66(1866), 289–321.

Diaz, S., Exceptional Weierstrass points and the divisor on moduli space that they define, Memoirs American Math. Soc., 327(1985).

Eisenbud, D., Harris, J., Limit linear series: basic theory, Inventiones Math., 85(1986), 337–371.

Eisenbud, D., Harris, J., The Kodaira dimension of the moduli space of curves of genus ≥ 23, Inventiones Math., 90(1987), 359–387.

Farkas, G., Higher ramification and varieties of secant divisors on the generic curve, Journal of the London Math. Soc., 78(2008), 418–440.

Farkas, G., Verra, A., The universal theta divisor over the moduli space of stable curves, Journal de Mathématiques Pures et Appliquées, 100(2013), 591–605.

Farkas, G., Verra, A., The geometry of the moduli space of odd spin curves, Annals of Math., 180(2014), 927–970.

Kaji, H., On the tangentially degenerate curves, Journal of the London Math. Soc., 33(1986), 430–440.

Katz, S., Iteration of multiple point formulas and application to conics, in Algebraic Geometry Sunadance 1986, Lecture Notes in Mathematics, 1436, 147–155, Springer Verlag, 1988.

Knudsen, F., The projectivity of the moduli space of stable curves II. The stacks M₉,ₙ, Math. Scandinavica, 52(1983), 161–199.

MacDonald, I., Symmetric products of an algebraic curve, Topology, 1(1962), 319–343.

Mullane, S., Divisorial strata of abelian differentials, International Math. Res. Notices, 2017(2016), 1717–1748.

Ungureanu, M., Dimension theory and degenerations of de Jonquières divisors, International Math. Research Notices, 20(2021), 15911–15958.

Torelli, R., Dimostrazione di una formula di de Jonquières e suo significato geometrico, Rendiconti Circolo Mat. Palermo, 21(1906), 58–65.

Vainsencher, I., Counting divisors with prescribed singularities, Transactions American Math. Soc., 267(1981), 399–421.

Zeuthen, H., Lehrbuch der Abzählenden Methoden der Geometrie, Teubner Verlag 1914.

Downloads

Published

2023-03-20

How to Cite

FARKAS, . G. (2023). Generalized de Jonqui`eres divisors on generic curves. Studia Universitatis Babeș-Bolyai Mathematica, 68(1), 13–27. https://doi.org/10.24193/subbmath.2023.1.01

Issue

Section

Articles

Similar Articles

<< < 5 6 7 8 9 10 11 12 > >> 

You may also start an advanced similarity search for this article.