Unsteady flow of Bingham fluid in a thin layer with mixed boundary conditions

Authors

  • Yassine LETOUFA Department of Mathematics, University Hamma Lakhdar of El-oued, El-oued 39000, Algeria, e-mail: letoufa-yassine@univ-eloued.dz
  • Hamid BENSERIDI Laboratory of Applied Mathematics, Faculty of Sciences, University Ferhat Abbas of S´etif1, S´etif1 19000, Algeria, e-mail: hamid.benseridi@univ-setif.dz
  • Tedjani HADJ AMMAR Department of Mathematics and LABTHOP Laboratory, University Hamma Lakhdar of El-oued, El-oued 39000, Algeria, e-mail: tedjani-hadjammar@univ-eloued.dz

DOI:

https://doi.org/10.24193/subbmath.2022.4.08

Keywords:

Mixed boundary problems, Bingham fluid, lubrication problem, a priori estimates.

Abstract

In this paper we consider the dynamic system for Bingham fluid in a three-dimensional thin domain with Fourier and Tresca boundary condition. We study the existence and uniqueness results for the weak solution, then we establish its asymptotic behavior, when the depth of the thin domain tends to zero. This study yields a mechanical laws that give a new description of the behavior this system.

Mathematics Subject Classification (2010): 35B40, 47A52, 76D20.

Received 21 February 2020; Accepted 17 May 2020.

References

Bayada, G., Boukrouche, M., On a free boundary problem for the Reynolds equation derived from the Stokes systems with Tresca boundary conditions, J. Math. Anal. Appl., 282(2003), 212-231.

Benseridi, H., Letoufa, Y., Dilmi, M., On the asymptotic behavior of an interface problem in a thin domain, M. Proc. Natl. Acad. Sci., India, Sect. A Phys. Sci., 89(2019), no. 2, 1-10.

Bingham, E.C., An investigation of the laws of plastic flow, U.S. Bureau of Standards Bulletin, 13(1916), 309-353.

Boukrouche, M., El Mir, R., Asymptotic analysis of non-Newtonian fluid in a thin domain with Tresca law, Nonlinear Analysis, Theory Methods and Applications, 59(2004), 85-105.

Boukrouche, M., L- ukaszewicz, G., On a lubrication problem with Fourier and Tresca boundary conditions, Math. Mod. and Meth. in Applied Sciences, 14(2004), no. 6, 913- 941.

Brezis, H., Functional Analysis, Sobolev Spaces and Partial Differential Equations, doi.org/10.1007/978-0-387-70914-7, Springer, New York, NY 2011.

Duvant, G., Lions, J.L., Les In´equations en M´ecanique et en Physique, Dunod, Paris, 1972.

Letoufa, Y., Benseridi, H., Dilmi, M., Study of Stokes dynamical system in a thin domain with Fourier and Tresca boundary conditions, Asian-European Journal of Mathematics, (2019), doi: abs/10.1142/S1793557121500078.

Messelmi, F., Merouani, B., Flow of Herschel-Bulkley fluid through a two dimensional thin layer, Stud. Univ. Babe¸s-Bolyai Math., 58(2013), no. 1, 119-130.

Pit, R., Mesure locale de la vitesse a` l’interface solide-liquide simple: Glissement et roˆle des interactions, Th`ese Physique Universit´e Paris XI, 1999.

Pit, R., Hervet, H., L´eger, L., Direct experimental evidences for flow with slip at hexadecane solid interfaces, La Revue de M´etalurgie-CIT/Science, 2001.

Strozzi, A., Formulation of three lubrication problems in term of complementarity, Wear, 104(1985), 103-119.

Tevaarwerk, J.L., The shear of hydrodynamic oil films, Phd Thesis, Cambridge, England, 1976.

Downloads

Published

2022-12-02

How to Cite

LETOUFA, Y., BENSERIDI, H., & HADJ AMMAR, T. (2022). Unsteady flow of Bingham fluid in a thin layer with mixed boundary conditions. Studia Universitatis Babeș-Bolyai Mathematica, 67(4), 773–788. https://doi.org/10.24193/subbmath.2022.4.08

Issue

Section

Articles

Similar Articles

<< < 1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.