Darboux problem for fractional partial hyperbolic differential inclusions on unbounded domains with delay

Authors

  • Mohamed HELAL Science and Technology Faculty, Mustapha Stambouli University of Mascara, B.P. 763, 29000, Mascara, Algeria Laboratory of Mathematics, Djillali Liabes University of Sidi Bel-Abb`es, B.P. 89, 22000, Sidi Bel-Abb`es, Algeria, e-mail: helalmohamed@univ-mascara.dz

DOI:

https://doi.org/10.24193/subbmath.2022.4.03

Keywords:

Partial functional differential inclusion, fractional order, solution, left- sided mixed Riemann-Liouville integral, Caputo fractional-order derivative, finite delay, Fr´echet space, fixed point.

Abstract

In this paper we investigate the existence of solutions of initial value problems (IVP for short), for partial hyperbolic functional and neutral differential inclusions of fractional order involving Caputo fractional derivative with finite delay by using the nonlinear alternative of Frigon type for multivalued admissible contraction in Fr´echet spaces.

Mathematics Subject Classification (2010): 26A33, 34K30, 34K37, 35R11.

Received 12 December 2019; Accepted 17 January 2020.

References

Aubin, J.P., Cellina, A., Differential Inclusions, Springer-Verlag, Berlin-Heidelberg, New York, 1984.

Aubin, J.P., Frankowska, H., Set-Valued Analysis, Birkhauser, Boston, 1990.

Belarbi, A., Benchohra, M., Ouahab, A., Uniqueness results for fractional functional differential equations with infinite delay in Fr´echet spaces, Appl. Anal., 85(2006), 1459- 1470.

Benchohra, M., G´orniewicz, L., Ntouyas, S.K., Ouahab, A., Controllability results for impulsive functional differential inclusions, Rep. Math. Phys., 54(2004), 211-227.

Benchohra, M., Hellal, M., Perturbed partial functional fractional order differential equations with infinite delay, Journal of Advanced Research in Dynamical and Control Sys- tem, 5(2013), no. 2, 1-15.

Benchohra, M., Hellal, M., Perturbed partial fractional order functional differential equations with Infinite delay in Fr´echet spaces, Nonlinear Dyn. Syst. Theory, 14(2014), no. 3, 244-257.

Benchohra, M., Hellal, M., A global uniqueness result for fractional partial hyperbolic differential equations with state-dependent delay, Ann. Polon. Math., 110(2014), no. 3, 259-281.

Covitz, H., Nadler Jr., S.B., Multivalued contraction mappings in generalized metric spaces, Israel J. Math., 8 (1970), 5-11.

Deimling, K., Multivalued Differential Equations, Walter De Gruyter, Berlin-New York, 1992.

Frigon, M., Fixed Point Results for Multivalued Contractions on Gauge Spaces, Set Valued Mappings with Applications in Nonlinear Analysis, 175-181, Ser. Math. Anal. Appl., 4, Taylor & Francis, London, 2002.

Frigon, M., Granas, A., R´esultats de type Leray-Schauder pour des contractions sur des espaces de Fr´echet, Ann. Sci. Math. Qu´ebec, 22(1998), no. 2, 161-168.

Gorniewicz, L., Topological Fixed Point Theory of Multivalued Mappings, Mathematics and its Applications, 495, Kluwer Academic Publishers, Dordrecht, 1999.

Helal, M., Fractional Partial Hyperbolic Differential Inclusions with State-Dependent Delay, J. Fract. Calc. Appl., 10(2019), no. 1, 179-196.

Hilfer, R., Applications of Fractional Calculus in Physics, World Scientific, Singapore, 2000.

Hu, Sh., Papageorgiou, N., Handbook of Multivalued Analysis, Theory I, Kluwer, Dordrecht, 1997.

Kilbas, A.A., Srivastava, H.M., Trujillo, J.J., Theory and Applications of Fractional Differential Equations. North-Holland Mathematics Studies, 204. Elsevier Science B.V., Amsterdam, 2006.

Kisielewicz, M., Differential Inclusions and Optimal Control, Kluwer, Dordrecht, The Netherlands, 1991.

Lakshmikantham, V., Leela, S., Vasundhara, J., Theory of Fractional Dynamic Systems, Cambridge Academic Publishers, Cambridge, 2009.

Lakshmikantham, V., Wen, L., Zhang, B., Theory of Differential Equations with Unbounded Delay, Math. Appl., Kluwer Academic Publishers, Dordrecht, 1994.

Mainardi, F., Fractional Calculus and Waves in Linear Viscoelasticity. An Introduction to Mathematical Models, Imperial College Press, London, 2010.

Oldham, K.B., Spanier, J., The Fractional Calculus, Academic Press, New York, London, 1974.

Tarasov, V.E., Fractional Dynamics: Application of Fractional Calculus to Dynamics of Particles, Fields and Media, Springer, Heidelberg; Higher Education Press, Beijing, 2010.

Vityuk, A.N., Existence of Solutions of partial differential inclusions of fractional order, Izv. Vyssh. Uchebn. , Ser. Mat., 8(1997), 13-19.

Vityuk, A.N., Golushkov, A.V., Existence of solutions of systems of partial differential equations of fractional order, Nonlinear Oscil., 7(3)(2004), 318-325.

Wu, J., Theory and Applications of Partial Functional Differential Equations, Springer- Verlag, New York, 1996.

Downloads

Published

2022-12-02

How to Cite

HELAL, M. (2022). Darboux problem for fractional partial hyperbolic differential inclusions on unbounded domains with delay. Studia Universitatis Babeș-Bolyai Mathematica, 67(4), 703–716. https://doi.org/10.24193/subbmath.2022.4.03

Issue

Section

Articles