A class of diffusion problem of Kirchhoff type with viscoelastic term involving the fractional Laplacian

Authors

  • Eugenio Cabanillas LAPA Instituto de Investigacio´n-FCM-UNMSM, Lima, Peru, e-mail: cleugenio@yahoo.com https://orcid.org/0000-0002-8941-4394
  • Zacarias L. HUARINGA SEGURA Instituto de Investigacio´n-FCM-UNMSM, Lima, Peru, e-mail: zhuaringas@unmsm.edu.pe
  • Juan B. BERNUI BARROS Instituto de Investigacion-FCM-UNMSM, Lima, Peru, e-mail: jbernuib@unmsm.edu.pe
  • Eduardo V. TRUJILLO FLORES Instituto de Investigacion-FIARN-UNAC, Lima, Peru, e-mail: evtrujillof2005@yahoo.es https://orcid.org/0000-0003-3087-6604

DOI:

https://doi.org/10.24193/subbmath.2020.4.05

Keywords:

Kirchhoff-type diffusion problem, fractional Laplacian, local existence, Galerkin method.

Abstract

This work is concerned with a class of diffusion problem of Kirchhoff type with viscoelastic term and nonlinear interior source in the setting of the fractional Laplacian. Under suitable conditions we prove the existence of global solutions and the exponential decay of the energy.

Mathematics Subject Classification (2010): 35K55, 35R11, 35B44, 35Q91.

References

Abdellaoui, B., Abdellaoui, B., Attar, A., Bentifour, R. et al., On fractional p-Laplacian parabolic problem with general data, Annali di Matematica Pura ed Applicata (2018), 197:329.

Acerbi, E., Mingione, G., Regularity results for stationary electro–rheological fuids, Arch. Ration. Mech. Anal. 164(2002), 213-259.

Alt, H.W., Di Benedetto, E., Nonsteady flow of water and oil through inhomogeneous porous media, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 12(1985), no. 4, 335-392.

Alves, C.O., Corrˆea, F., Ma, T.F., Positive solutions for a quasilinear elliptic equation of Kirchhoff type, Comput. Math. Appl., 49(2005), 85-93.

Andreu, F., Mazan,J.M., Rossi,J.D., Toledo,J., A nonlocal p-Laplacian evolution equationwith nonhomogeneous Dirichlet boundary conditions, SIAM J. Math. Anal., 40(2009),1815-1851.

Anello, G., A uniqueness result for a nonlocal equation of Kirchhoff type and some related open problems, J. Math. Anal. Appl., 373(2011), 248-251.

Antontsev, S.N., Oliveira, H.B., Qualitative properties of the ice-thickness in a 3D model, WSEAS Trans. Math., 7(3)(2008), 78-86.

Antontsev, S.N., Shmarev, S.I., A model porous medium equation with variable exponent of nonlinearity: existence, uniqueness and localization properties of solutions, Nonlinear Anal., 60(2005), 515-545.

Antontsev, S.N., Shmarev, S.I., Simsen J., Simsen, M.S., On the evolution p-Laplacian with nonlocal memory, Nonlinear Anal., 134(2016), 31-54.

Applebaum, D., L´evy process from probability to finance and quantum groups, Notices Amer. Math. Soc., 51(2004), 1336-1347.

Autuori, G., Pucci, P., Salvatori, M.C., Asymptotic Stability for anisotropic Kirchhoff system, J. Math. Anal. Appl., 352(2009), 149-165.

Barbu, V., Integro-differential equations in Hilbert spaces, An. S¸ti. Univ. ”Al. I. Cuza” Ia¸si, Sec¸tia Mat. (N.S.), 19(1973), 365-383.

Bellman, R., Inequalities, Springer-Verlag Berlin, Heidelgerg, New York, 1971.

Blanchard, D., Francfort, G.A., Study of a doubly nonlinear heat equation with no growth assumptions on the parabolic term, SIAM J. Math. Anal., 19(5)(1988), 1032-1056.

Bokalo, T.M., Some formulas of integration by parts in the spaces of functions with variable exponent of nonlinearity, Visn. L’viv. Univ., Ser. Mekh. Mat., 71(2009), 5-18.

Bokalo, T.M., Buhrii, O.M., Doubly nonlinear parabolic equations with variable exponents of nonlinearity, Ukrainian Math. J., 63(2011), 709-728.

Bucur, C., Valdinoci, E., Nonlocal diffusion and applications, Lecture Notes of the Unione Matematica Italiana, 20, Springer, [Cham], Unione Matematica Italiana, Bologna, 2016, xii+155 pp.

Chen, Y., Levine, S., Rao, M., Variable exponent, linear growth functionals in image restoration, SIAM J. Appl. Math., 66(2006), 1383-1406.

Crandall, M.G., Londen S.O., Nohel, J.A., An abstract nonlinear Volterra integrodifferential equation, J. Math. Anal. Appl., 64(1978), 701-735.

Daz, J., Talin, F., On a nonlinear parabolic problem arising in some models related to turbulent flows, SIAM J. Math. Anal., 25(1994), 1085-1111.

Edmunds, D.E., R´akosn´ık, J., Density of smooth functions in Wk,p(x)(Ω), Proc. R. Soc. A., 437(1992), 229-236.

Edmunds, D.E., R´akosn´ık, J., Sobolev embedding with variable exponent, Studia Math., 143(2000), 267-293.

Fan, X.L., Shen, J.S., Zhao, D., Sobolev embedding theorems for spaces Wk;p(x)(Ω), J. Math. Anal. Appl., 262(2001), 749-760.

Fan, X.L., Zhang, Q.H., Existence of solutions for p(x)-Laplacian Dirichlet problems, Nonlinear Anal., 52(2003), 1843-1852.

Fan, X.L., Zhao, D., On the Spaces Lp(x) and Wm,p(x), J. Math. Anal. Appl., 263(2001), 424-446.

Fife, P., Some nonclassical trends in parabolic and parabolic-like evolutions, Trends in Nonlinear Analysis, Berlin, Springer, 2003, 153-91.

Fiscella, A., Valdinoci, E., A critical Kirchhoff type problem involving a nonlocal operator, Nonlinear Anal., 94(2014), 156-170.

Fu, Y., Pucci, P., On solutions of space-fractional diffusion equationsby means of potential wells, Electron. J. Qualitative Theory Differ. Equ., 70(2016),1-17.

Giacomoni, J., Tiwari, S., Existence and global behavior of solutions to fractional p- Laplacian parabolic problems, Electron. J. Diff. Equ., 3(2018), no. 44, 1-20.

Gilardi, G., Stefanelli, U., Time-discretization and global solution for a doubly nonlinear Volterra equation, J. Differential Equations, 228(2006), 707-736.

Gobbino, M., Quasilinear degenerate parabolic equation of Kirchhoff type, Math. Meth- ods Appl. Sci., 22(1999), 375-388.

He, X., Zou, W., Infinitely many positive solutions for Kirchhoff-type problems, Nonlinear Anal., 70(2009), no. 3, 1407-1414.

Kalashnikov, A., Some problems of the qualitative theory of second-order nonlinear degenerate parabolic equations, Russian Math. Surveys, 42(1987), no. 2, 169-222.

Kov´aˇcik, O., R´akosn´ık, J., On the spaces Lp(x)(Ω) and W 1,p(x)(Ω), Czechoslovak Math. J., 41(1991), 592-618.

Laskin, N., Fractional quantum mechanics and L´evy path integrals, Physics Letters A, 268(2000), 298-305.

MacCamy, R.C., Stability theorems for a class of functional differential equations, SIAM J. Appl. Math., 30(1976), 557-576.

Mao, A., Zhang, Z., Sign-changing and multiple solutions of Kirchhoff type problems without the P.S. condition, Nonlinear Anal.,70(2009), no. 3, 1275-1287.

Mingqi, X., R˘adulescu, V.,Zhang, B., Nonlocal Kirchhoff diffusion problems: local existence and blow-up of solutions, Nonlinearity, 31(2018), 3228-3250.

Nguyen, H.-M., Squassina, M., Fractional Caffarelli-Kohn-Nirenberg inequalities, J. Funct. Anal., 274(2018), no. 9, 2661-2672.

Nohel, J., Nonlinear Volterra equations for heat flow in materials with memory, Technical Summary Report 2081, University of Wisconsin-Madison, 1980.

Pan, N., Zhang, B., Cao, J., Degenerate Kirchhoff diffusion problems involving fractional p-Laplacian, Nonlin. Anal. RWA., 37(2017), no. 9, 56-70.

Pucci, P., Xiang, M.Q., Zhang, B.L., A diffusion problem of Kirchhoff type involving the nonlocal fractional p-Laplacian , Discrete. Contin. Dyn. Syst., 37(2017), 4035-4051.

Servadei, R., Valdinoci, E., Mountain Pass solutions for non-local elliptic operators, J. Math. Anal. Appl., 389(2012), 887-898.

Servadei, R., Valdinoci, E., Variational methods for non-local operators of elliptic type, Discrete Contin. Dyn. Syst., 33(2013), 2105-2137.

Servadei, R., Valdinoci, E., A Brezis-Nirenberg result for non-local critical equations in low dimension, Commun. Pure Appl. Anal., 12(2013), 2445-2464.

Servadei, R., Valdinoci, E., The Brezis-Nirenberg result for the fractional Laplacian, Trans. Amer. Math. Soc., 367(2015), 67-102.

Shin, K., Kang S., Doubly nonlinear Volterra equations involving the Leray-Lions operators, East Asian Math. J., 29(2013), 69-82.

Stefanelli, U., Well-posedness and time discretization of a nonlinear Volterra integrodifferential equation, J. Integral Equations Appl., 13(2001), 273-304.

Stefanelli, U., On some nonlocal evolution equations in Banach spaces, J. Evol. Equ., 4(2004), 1-26.

Truong, L.X., Van, Y.N., On a class of nonlinear heat equations with viscoelastic term, Comp. Math. App., 72(2016), no. 1, 216-232.

Valdinoci, E., From the long jump random walk to the fractional Laplacian, Bol. Soc. Esp. Mat. Apl. SMA, 49(2009), 33-44.

Vazquez, C., Schiavi, E., Durany, J., Daz, J.I., Calvo, N., On a doubly nonlinear parabolic obstacle problem modelling ice sheet dynamics, SIAM J. Appl. Math., 63(2003), no. 2, 683-707.

Zhikov, V.V., Solvability of the three-dimensional thermistor problem, Proc. Stekolov Inst. Math., 261(2008), 101-114.

Downloads

Published

2020-11-28

How to Cite

LAPA, E. C., HUARINGA SEGURA, Z. L., BERNUI BARROS, J. B., & TRUJILLO FLORES, E. V. (2020). A class of diffusion problem of Kirchhoff type with viscoelastic term involving the fractional Laplacian. Studia Universitatis Babeș-Bolyai Mathematica, 65(4), 543–559. https://doi.org/10.24193/subbmath.2020.4.05

Issue

Section

Articles

Similar Articles

<< < 16 17 18 19 20 21 22 23 24 25 > >> 

You may also start an advanced similarity search for this article.