On the stability of solutions of fractional non conformable differential equations

Authors

  • Paulo M. GUZMÁN Universidad Nacional del Nordeste, FaCENA, Av. Libertad 5470, 3400 – Corrientes Capital, Argentina, e-mail: pguzman@exa.unne.edu.ar; Universidad Nacional del Nordeste, Facultad de Ciencias Agrarias, Sargento Cabral 2131, 3400 – Corrientes Capital, Argentina
  • Luciano M. LUGO MOTTA BITTENCURT Universidad Nacional del Nordeste, FaCENA, Av. Libertad 5470, 3400 - Corrientes Capital, Argentina, e-mail: lmlmb@yahoo.com
  • Juan E. NÁPOLES VALDES Universidad Nacional del Nordeste, FaCENA, Av. Libertad 5470, 3400 - Corrientes Capital, Argentina e-mail: jnapoles@exa.unne.edu.ar Universidad Tecnol´ogica Nacional, FRRe, French 414, 3500 – Resistencia – Chaco, Argentina https://orcid.org/0000-0003-2470-1090

DOI:

https://doi.org/10.24193/subbmath.2020.4.02

Keywords:

Fractional non conformable system of equations, Lyapunov second method, stability, asymptotic stability, instability.

Abstract

In this note we obtain sufficient conditions under which we can guarantee the stability of solutions of a fractional differential equations of non-conformable type and we obtain some fractional analogous theorems of the direct Lyapunov method for a given class of equations of motion.

Mathematics Subject Classification (2010): 34A08.

References

Abdeljawad, T., On conformable fractional calculus, Journal of Computational and Applied Mathematics, 279(2015), 57-66.

Guzma´n, P.M., Langton, G., Lugo Motta, L., Medina, J., N´apoles V., J.E., A New definition of a fractional derivative of local type, J. Mathem. Anal., 9(2018), no. 2, 88- 98.

Guzma´n, P.M., Lugo Motta, L., N´apoles V., J.E., A note on stability of certain Lienard fractional equation, International Journal of Mathematics and Computer Science, 14(2019), no. 2, 301-315.

Khalil, R., Al Horani, M., Yousef, A., Sababheh, M., A new definition of fractional derivative, Journal of Computational and Applied Mathematics, 264, 65-70.

Kilbas, A., Srivastava, M.H., Trujillo, J.J., Theory and Application on Fractional Differential Equations, vol. 204, North-Holland Mathematics Studies, 2006.

Lakshmikantham, V., Leela, S., Devi, J.V., Theory of Fractional Dynamic Systems, Cambridge: Cambridge Scientific Publ., 2009.

Li´enard, A., E´tude des oscillations entretenues, Revue G´enerale de l’E´ lectricit´e, 23 (1928), 901-912, 946-954.

Lyapunov, A.M., The General Problem of Motion Stability, (in Russian), Leningrad, Moscow: ONTI, 1935.

Martynyuk, A.A., On the stability of a system of equations with fractional derivatives with respect to two measures, Journal of Mathematical Sciences, 217(2016), no. 4, 468- 475.

Martynyuk, A.A., Lyapunov direct method, stability, asymptotic stability, instability, Dopov. Nats. Akad. Nauk Ukr., (2018), no. 6, 9-16.

N´apoles V., J.E., A note on the asymptotic stability in the whole of nonautonomous systems, Revista Colombiana de Matem´aticas, 33(1999), 1-8.

N´apoles V., J.E., Guzman, P.M., Lugo Motta, L., Some new results on the non conformable fractional calculus, Advances in Dynamical Systems and Applications, 13(2018), no. 2, 167-175.

Podlybny, I., Fractional Differential Equations, London, Acad. Press, 1999.

Downloads

Published

2020-11-28

How to Cite

GUZMÁN, P. M., LUGO MOTTA BITTENCURT, L. M., & NÁPOLES VALDES, J. E. (2020). On the stability of solutions of fractional non conformable differential equations. Studia Universitatis Babeș-Bolyai Mathematica, 65(4), 495–502. https://doi.org/10.24193/subbmath.2020.4.02

Issue

Section

Articles

Similar Articles

<< < 1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.