Inequalities involving Mittag-Leffler type q-Konhauser polynomial

Authors

  • Bharti Vishandas NATHWANI Department of Mathematics, Amity School of Applied Sciences, Amity University, Mumbai-410-206, India e-mail: bharti.nathwani@yahoo.com https://orcid.org/0000-0001-6661-4732

DOI:

https://doi.org/10.24193/subbmath.2020.3.07

Keywords:

q-Mittag-Leffler function, q-Konhauser polynomial, series inequalities, difference equation, generating function relation, series inequality relations.

Abstract

In the present work, we propose generalized structure of the q- Konhauser polynomial suggested by a generalized q-Mittag-Leffler function. For this polynomial, we obtain its difference equation and several other properties involving inequalities are also derived which yield as the particular cases, q- analogues of the generating function relations and finite summation formulas.

Mathematics Subject Classification (2010): 33B15, 33E12, 33E99.

References

Agarwal, P., Some inequalities involving Hadamardtype k-fractional integral operators, Math. Methods Appl. Sci., 40(2017), no. 11, 3882-3891.

Agarwal, P., Jleli, M., Tomar, M., Certain Hermite-Hadamard type inequalities via generalized k-fractional integrals, J. Inequal. Appl., 55(2017), no. 1, 1-10.

Agarwal, P., Tariboon, J., Ntouyas, S.K., Some generalized Riemann-Liouville k- fractional integral inequalities, J. Inequal. Appl., 122(2016), no. 1, 1-13.

Agarwal, R.P., Certain fractional q-integrals and q-derivatives, Proc. Comb. Phil. Soc., 66(1969), no. 3, 365-370.

Al-Salam, W.A., Some fractional q-integarls and q-derivatives, Proc. Edinb. Math. Soc., 15(1966), 135-140.

Al-Salam, W.A., Verma, A., q-Konhauser polynomials, Pacific J. Math., 1(1983), no. 108, 1-7.

Baleanu, D., Agarwal, P., Certain inequalities involving the fractional-integral operators, Abstr. Appl. Anal., 2014(2014), 1-10.

Baleanu, D., Purohit, S.D., Agarwal, P., On fractional integral inequalities involving hypergeometric operators, Chinese Journal of Mathematics, 2014(2014), 1-10.

Choi, J.W.A., Agarwal, P., Some new Saigo type fractional integral inequalities and their-analogues, Abstr. Appl. Anal., 2014(2014), 1-11.

Choi, J.W.A., Agarwal, P., A note on fractional integral operator associated with multiindex Mittag-Leffler functions, Filomat, 30(2016), no. 7, 1931-1939.

Clarkson, P.A., Nijhoff, F.W., Symmetries and Integrability of Difference Equations, Cambridge University Press, 1999.

Dave, B.I., Extensions of Certain Inverse Series Relations and Associated Polynomials, Ph. D. Thesis, The M.S. University of Baroda, Vadodara, 1994.

Gasper, G., Rahman, M., Basic Hypergeometric Series, Cambridge University Press, Cambridge, 1990.

Gorenflo, R., Kilbas, A.A., Rogosin, S.V., On the generalized Mittag-Leffler type function, Integral Transforms Spec. Funct., 7(1998), 215-224.

Gupta, I.S., Debnath, L., A note on fractional integral operator associated with multiindex Mittag-Leffler functions, Integral Transforms Spec. Funct., 18(2007), no. 5, 329-336. [16] Hahn, W., U¨ber Orthogonal polynome, die q-Differenzengleichungen genu¨gen, Math. Nachr., 2(1949), 4-34.

Haubold, H.J., Mathai, A.M., Saxena, R.K., The H-Function: Theory and Applications, Centre for Mathematical Sciences, Pala Campus, Kerala, India, 2008.

Kilbas, A.A., Saigo, M., Saxena, R.K., Generalized Mittag-Leffler function and generalized fractional calculus operators, Integral Transforms Spec. Funct., 15(2004), 31-49.

Mansour, M., An asymptotic expansion of the q-Gamma function Γq (x), J. Nonlinear Math. Phys., 13(2006), no. 4, 479-483.

Mittag-Leffler, G., Sur la nouvelle fonction Eα(x), C.R. Acad. Sci., Paris, 137(1903), 554-558.

Nagai, A., Discrete Mittag-Leffler function and its applications, Deparment of Mathematical Sciences, Graduate School of Engineering Sciences, Osaka University, 1302(2003), 1-20.

Nathwani, B.V., Generalized q-Mittag-Leffler function and its properties, Journal of Divulgaciones Matematicas, 18(2017), no. 1, 10-33.

Nathwani, B.V., Dave, B.I., Generalized Mittag-Leffler function and its properties, Math. Student, 86(2017), no. 1-2, 63-76.

Nathwani, B.V., Dave, B.I., Fractional q-calculus of anextended q- Mittag-Leffler function, J. Fract. Calc. Appl., 9(2018), no. 1, 64-81.

Prabhakar, T.R., Rekha, S., Some results on the polynomials Lα,β (x), Rocky Mountain J. Math., 8(1978), no. 4, 751-754.

Prajapati, J.C., Ajudia, N., Agarwal, P., Some results due to Konhauser polynomials of first kind and Laguerre polynomials, Appl. Math. Comput., 247(2014), 639-650.

Prajapati, J.C., Dave, B.I., Nathwani, B.V., On a unification of generalized MittagLeffler function and family of Bessel functions, Advances in Pure Mathematics, 3(2013), 127-137.

Prajapati, J.C., Nathwani, B.V., Recurrence relation of a unified generalized MittagLeffler function, Palest. J. Math., 3(2014), no. 1, 94-98.

Prajapati, J.C., Nathwani, B.V., Fractional calculus of a unified Mittag-Leffler function, Ukrainian Math. J., 66(2015), no. 8, 1267-1280.

Rainville, E.D., Special Functions, Macmillan Co., New York, 1960.

Ruzhansky, M.V., Jecho, Y., Agarwal, P., Area, I., Advances in Real and Complex Analysis with Applications, Springer, Singapore, 2017.

Saigo, M., Kilbas, A.A., On Mittag Leffler type function and applications, Integral Trans- forms Spec. Funct., 7(1998), 97-112.

Saxena, R.K., Kalla, S., Saxena, R., Multivariate analogue of generatized Mittag-Leffer function, Integral Transforms Spec. Funct., 22(2011), no. 7, 533-548.

Shukla, A.K., Prajapati, J.C., On a generalization of Mittag-Leffler function and its properties, J. Math. Anal. Appl., 336(2007), no. 2, 797-811.

Tariboon, J., Ntouyas, S.K., Agarwal, P., New concepts of fractional quantum calculus and applications to impulsive fractional q-difference equations, Adv. Difference Equ., 18(2015), 1-19.

Wang, G., Agarwal, P., Chand, M., Certain Gru¨s type inequalities involving the generalized fractional integral operator, J. Inequal. Appl., 147(2014), no. 1, 1-8.

Wiman, A., U¨ber de fundamental satz in der theoric der funktionen Eα(x), Acta Math., 29(1905), 191-201.

Wiman, A., U¨ber die nullstellen der funktionen Eα(x), Acta Math., 29(1905), 217-234. [39] Zhang, X., Agarwal, P., Liu, Z., Peng, H., The general solution for impulsive differential equations with Riemann-Liouville fractional order q(1, 2), Open Math., 13(2015), no. 1, 1-23.

Downloads

Published

2020-09-15

How to Cite

NATHWANI , B. V. (2020). Inequalities involving Mittag-Leffler type q-Konhauser polynomial. Studia Universitatis Babeș-Bolyai Mathematica, 65(3), 379–401. https://doi.org/10.24193/subbmath.2020.3.07

Issue

Section

Articles

Similar Articles

<< < 12 13 14 15 16 17 18 19 20 21 > >> 

You may also start an advanced similarity search for this article.