A refinement of an inequality due to Ankeny and Rivlin

Authors

DOI:

https://doi.org/10.24193/subbmath.2020.3.01

Keywords:

Inequalities, polynomials, maximum modulus.

Abstract

Let $p(z)= \sum_{\nu =0}^n a_\nu z^\nu$ be a polynomial of degree $n$, $ M(p,R):= \max_{|z|=R \ge 0} |p(z)|,$ and $M(p,1):=M(p)$. Then by well-known result due to Ankeny and Rivlin \cite{Ankeny}, we have M(p.R)≤(Rn+12)M(p), R≥1. In this paper, we sharpen and generalizes the above inequality by using a result due to Govil \cite{Govil1989}.

Mathematics Subject Classification (2010): 15A18, 30C10, 30C15, 30A10.

References

Ankeny, N.C., Rivlin, T.J., On a theorem of S. Bernstein, Pacific J. Math, 5(2)(1955), 849-862.

Aziz, A., Growth of polynomials whose zeros are within or outside a circle, Bull. Austral. Math. Soc., 81(1987), 247-256.

Aziz, A., Mohammad, Q.G., Growth of polynomials with zeros outside a circle, Proc. Amer. Math. Soc., 81(1981), 549-553.

Chan, T.N., Malik, M.A., On Erd¨os-Lax Theorem, Proc. Indian Acad. Sci., 92(1983), 191-193.

Govil, N.K., On the maximum modulus of polynomials not vanishing inside the unit circle, Approx. Theory and its Appl., 5(3)(1989), 79-82.

Govil, N.K., On growth of polynomials, J. of Inequal. Appl., 7(5)(2002), 623-631.

Govil, N.K., Qazi, M.A., Rahman, Q.I., Inequalities describing the growth of polynomials not vanishing in a disk of prescribed radius, Math. Inequal. Appl., 6(3)(2003), 491-498. [8] Milovanovi´c, G.V., Mitrinovi´c, D.S., Rassias, Th.M., Topics in Polynomials: Extremal Problems, Inequalities, Zeros, World Scientific Publishing Co. Pte. Ltd., 1994.

Nehari, Z., Conformal Mapping, McGraw-Hill, New York, 1952.

P´olya, G., Szego¨, G., Problems and Theorems in Analysis, Volume I, Springer-Verlag, Berlin-Heidelberg, 1972.

Pukhta, M.S., Extremal Problems for Polynomials and on Location of Zeros of Polynomials, Ph. D Thesis, Jamia Millia Islamia, New Delhi, 1995.

Rahman, Q.I., Schmeisser, G., Les In´egaliti´es de Markov et de Bernstein, Les Presses de l’Universit´e de Montr´eal, Montr´eal, Canada, 1983.

Tripathi, D., On Extemal Problems and Location of Zeros of Polynomials, Ph.D Thesis, Banasthali University, Rajasthan, 2016.

Downloads

Published

2020-09-15

How to Cite

TRIPATHI, D. (2020). A refinement of an inequality due to Ankeny and Rivlin. Studia Universitatis Babeș-Bolyai Mathematica, 65(3), 325–332. https://doi.org/10.24193/subbmath.2020.3.01

Issue

Section

Articles

Similar Articles

<< < 5 6 7 8 9 10 11 > >> 

You may also start an advanced similarity search for this article.