Korovkin type approximation on an infinite interval via generalized matrix summability method using ideal

Authors

  • Sudipta DUTTA Department of Mathematics Govt. General Degree College At Manbazar-II Purulia, Pin-723131, West Bengal, India, e-mail: drsudipta.prof@gmail.com
  • Rima GHOSH Garfa D.N.M. Girls High School Kolkata-700075, West Bengal, India, e-mail: rimag944@gmail.com

DOI:

https://doi.org/10.24193/subbmath.2020.2.06

Keywords:

Positive linear operator, Korovkin type approximation theorem, ideal, AI -summable, AI-summable.

Abstract

Following the notion of AI -summability method for real sequences [24] we establish a Korovkin type approximation theorem for positive linear operators on UC∗[0, ∞), the Banach space of all real valued uniform continuous functions on [0, ∞) with the property that lim f (x) exists finitely for any f ∈ UC∗[0, ∞). In →∞ the last section, we extend the Korovkin type approximation theorem for positive linear operators on UC∗ ([0, ∞) × [0, ∞)). We then construct an example which shows that our new result is stronger than its classical version.

Mathematics Subject Classification (2010): 40A35, 47B38, 41A25, 41A36.

References

Aliprantis, C.D., Burkinshaw, O., Principles of Real Analysis, Academic Press, New York, 1998.

Belen, C., Mursaleen, M., Yildirim, M., Statistical A-summability of double sequences and a Korovkin type approximation theorem, Bull. Korean Math. Soc., 49(2012), no. 4, 851-861.

Connor, J., The Statistical and strong p-Cesaro convergence of sequences, Analysis, 8(1988), 47-63.

Das, P., Kostyrko, P., Wilczyn´ski, W., Malik, P., I and I∗-convergence of double sequences, Math. Slovaca, 58(2008), no. 5, 605-620.

Demirci, K., Strong A-summabilty and A-statistical convergence, Indian J. Pure Appl. Math., 27(1996), 589-593.

Demirci, K., Dirik, F., A Korovkin type approximation theorem for double sequences of positive linear operators of two variables in A-statistical sense, Bull. Korean Math. Soc., 47(2010), no. 4, 825-837.

Demirci, K., Karaku¸s, S., A-statistical Korovkin type approximation theorem for functions of two variables on an infinite interval, Acta Math. Univ. Comenian.(N.S.), 81(2012), no. 2, 151-157.

Demirci, K., Karaku¸s, S., Korovkin type approximation theorem for double sequences of positive linear operators via statistical A-summability, Results Math., 63(2013), 1-13.

Duman, O., Khan, M.K., Orhan, C., A-statistical convergence of approximating operators, Math. Inequal. Appl., 6(2003), no. 4, 689-699.

Dutta, S., Akdagˇ, S., Das, P., Korovkin type approximation theorem via AI –summability method, Filomat, 30(2016), no. 10, 2663-2672.

Dutta, S., Das, P., Korovkin type approximation theorem in AI -statistical sense, Mat. Vesnik, 67(2015), no. 4, 288-300.

Edely, O.H.H., Mursaleen, M., On statistical A-summability, Math. Comp. Model., 49(2009), no. 8, 672-680

Erku¸s, E., Duman, O., A-statistical extension of the Korovkin type approximation theorem, Proc. Indian Acad. Sci. Math. Sci., 115(2005), no. 4, 499-508.

Fast, H., Sur la convergence statistique, Colloq. Math., 2(1951), 241-244. [15] Fridy, J.A., On statistical convergence, Analysis, 5(1985), 301-313.

Kolk, E., Matrix summability of statistically convergent sequences, Analysis, 13(1993), 77-83.

Korovkin, P.P., Linear Operators and Approximation Theory, Delhi, Hindustan Publ. Co., 1960.[18] Kostyrko, P., Sˇala´t, T., Wilczyn´ski, W., I-convergence, Real Anal. Exchange,26(2000/2001), no. 2, 669-685.

Mursaleen, M., Alotaibi, A., Korovkin type approximation theorem for functions of two variables through statistical A-summability, Advances in Difference Equations, https://doi.org/10.1186/1687-1847-2012-65.

Mursaleen, M., Edely, O.H.H., Statistical convergence of double sequences, J. Math. Anal. Appl., 288(2003), 223-331.

Robison, G.M., Divergent double sequences and series, Trans. Amer. Math. Soc., 28(1926), no. 1, 50-73.

Sˇala´t, T., On Statistically convergent sequences of real numbers, Math. Slovaca, 30(1980), 139-150.

Savas, E., Das, P., A generalized statistical convergence via ideals, Appl. Math. Lett., 24(2011), 826-830.

Savas, E., Das, P., Dutta, S., A note on strong matrix summability via ideals, Appl. Math. Lett., 25(2012), 733-738.

Savas, E., Das, P., Dutta, S., A note on some generalized summability methods, Acta Math. Univ. Comenian. (N.S.), 82(2013), no. 2, 297-304.

Downloads

Published

2020-06-05

How to Cite

DUTTA, S., & GHOSH, R. (2020). Korovkin type approximation on an infinite interval via generalized matrix summability method using ideal. Studia Universitatis Babeș-Bolyai Mathematica, 65(2), 243–254. https://doi.org/10.24193/subbmath.2020.2.06

Issue

Section

Articles

Similar Articles

<< < 3 4 5 6 7 8 9 10 11 12 > >> 

You may also start an advanced similarity search for this article.