Inclusion properties of hypergeometric type functions and related integral transforms

Authors

DOI:

https://doi.org/10.24193/subbmath.2020.2.04

Keywords:

Univalent, convex, starlike, close-to-convex functions, Gaussian hyper-geometric functions, incomplete beta functions, Komatu integral operator, poly-logarithm.

Abstract

In this work, conditions on the parameters a, b and c are given so that the normalized Gaussian hypergeometric function zF (a, b; c; z), where F(a; b; c; z) = 1X n=0 (a)n(b)n (c)n(1)n zn; jzj < 1; is in certain class of analytic functions. Using Taylor coefficients of functions in certain classes, inclusion properties of the Hohlov integral transform involving zF (a, b; c; z) are obtained. Similar inclusion results of the Komatu integral operator related to the generalized polylogarithm are also obtained. Various results for the particular values of these parameters are deduced and compared with the existing literature.

Mathematics Subject Classification (2010): 30C45, 33C45, 33A30.

References

Ali, R.M., Badghaish, A.O., Ravichandran, V., Swaminathan, A., Starlikeness of integral transforms and duality, J. Math. Anal. Appl., 385(2012), no. 2, 808-822.

Ali, R.M., Lee, S.K., Subramanian, K.G., Swaminathan, A., A third-order differential equation and starlikeness of a double integral operator, Abstr. Appl. Anal., Article in press, 10 pages, DOI: 10.1155/2011/901235.

Ali, R.M., Nargesi, M.M., Ravichandran, V., Convexity of integral transforms and duality, Complex Variables and Elliptic Equations: An International Journal, DOI: 10.1080/17476933.2012.693483.

Bharati, R., Parvatham, R., Swaminathan, A., On subclasses of uniformly convex functions and corresponding class of starlike functions, Tamkang J. Math., 28(1997), no. 1, 17-32.

Fournier, R., Ruscheweyh, S., On two extremal problems related to univalent functions, Rocky Mountain J. Math., 24(1994), no. 2, 529-538.

Goodman, A.W., Univalent functions and nonanalytic curves, Proc. Amer. Math. Soc., 8(1957), 598-601.

Goodman, A.W., On uniformly convex functions, Ann. Polon. Math., 56(1991), no. 1, 87-92.

Kanas, S., Wisniowska, A., Conic regions and k-uniform convexity, Continued fractions and geometric function theory (CONFUN) (Trondheim, 1997), J. Comput. Appl. Math., 105(1999), no. 1-2, 327-336.

Komatu, Y., On a family of integral operators related to fractional calculus, Kodai Math. J., 10(1987), no. 1, 20-38.

Li, J.L., On some classes of analytic functions, Math. Japon., 40(1994), no. 3, 523-529. [11] Rainville, E., Special Functions, The Macmillan Co., New York 1960, xii+365 pp.

Ronning, F., Uniformly convex functions and a corresponding class of starlike functions, Proc. Amer. Math. Soc., 118(1993), no. 1, 189-196.

Silverman, H., Univalent functions with negative coefficients, Proc. Amer. Math. Soc., 51(1975), 109-116.

Swaminathan, A., Inclusion theorems of convolution operators associated with normalized hypergeometric functions, J. Comput. Appl. Math., 197(2006), no. 1, 15-28.

Swaminathan, A., Convexity of the incomplete beta functions, Integral Transforms Spec. Funct., 18(2007), no. 7-8, 521-528.

Swaminathan, A., Sufficient conditions for hypergeometric functions to be in a certain class of analytic functions, Comput. Math. Appl., 59(2010), no. 4, 1578-1583.

Downloads

Published

2020-06-05

How to Cite

WANI, L. A., & ANBHU, S. (2020). Inclusion properties of hypergeometric type functions and related integral transforms. Studia Universitatis Babeș-Bolyai Mathematica, 65(2), 211–227. https://doi.org/10.24193/subbmath.2020.2.04

Issue

Section

Articles

Similar Articles

<< < 5 6 7 8 9 10 11 12 13 14 > >> 

You may also start an advanced similarity search for this article.