Application of Ruscheweyh q-differential operator to analytic functions of reciprocal order

Authors

  • Shahid MAHMOOD Department of Mechanical Engineering, Sarhad University of Science and I.T. Landi Akhun Ahmad, Hayatabad Link. Ring Road, Peshawar, Pakistan. e-mail: shahidmahmood757@gmail.com
  • Saima MUSTAFA Department of Statistics & Mathematics PMAS-Arid Agriculture University, Rawalindi e-mail: saimamustafa28@gmail.com
  • Imran KHAN Department of Basic Sciences and Islamyat University of Engineering and Technology Peshawar, Pakistan, e-mail: ikhanqau1@gmail.com

DOI:

https://doi.org/10.24193/subbmath.2020.2.03

Keywords:

Analytic functions, Subordination, Functions with positive real part, Ruscheweyh q-differential operator, reciprocal order.

Abstract

The core object of this paper is to define and study new class of analytic function using Ruscheweyh q-differential operator. We also investigate a number of useful properties such as inclusion relation, coefficient estimates, subordination result,for this newly subclass of analytic functions.

Mathematics Subject Classification (2010): 30C45, 30C50.

References

Aldweby, H., Darus, M., Some subordination results on q-analogue of Ruscheweyh differential operator, Abstr. Appl. Anal., Vol. 2014, Art. ID 958563, 6 pages.

Anastassiu, G.A., Gal, S.G., Geometric and approximation properties of some singular integrals in the unit disk, J. Inequal. Appl., Vol. 2006, Art. ID 17231, 19 pages.

Anastassiu, G.A., Gal, S.G., Geometric and approximation properties of generalized singular integrals, J. Korean Math. Soc., 23(2006), no. 2, 425-443.

Aral, A., On the generalized Picard and Gauss Weierstrass singular integrals, J. Comput. Anal. Appl., 8(2006), no. 3, 249-261.

Aral, A., Gupta, V., On q-Baskakov type operators, Demonstr. Math., 42(2009), no. 1, 109-122.

Aral, A., Gupta, V., On the Durrmeyer type modification of the q-Baskakov type operators, Nonlinear Anal. Theory, Methods and Appl., 72(2010), no. 3-4, 1171-1180.

Aral, A., Gupta, V., Generalized q-Baskakov operators, Math. Slovaca, 61(2011), no. 4, 619-634.

Aral, A., Gupta, V., Agarwal, R.P., Applications of q-Calculus in Operator Theory, Springer, New York, NY, USA, 2013.

Arif, M., Mahmood, S., Sokol, J., Dziok, J., New subclass of analytic functions in conical domain associated with a linear operator, Acta Math. Sci., 36B(2016), no. 3, 1-13.

Jackson, F.H., On q-functions and a certain difference operator, Trans. Roy. Soc. Edinburgh, 46(1909), no. 2, 253-281.

Goodman, A.W., Univalent Functions, Vol. I, II, Polygonal Publishing House, Washington, New Jersey, 1983.

Jackson, F.H., On q-definite integrals, Quart. J. Pure Appl. Math., 41(1910), 193-203. [13] Kanas, S., Raducanu, D., Some class of analytic functions related to conic domains, Math. Slovaca, 64(2014), no. 5, 1183-1196.

Mahmmod, S., Sokol, J., New subclass of analytic functions in conical domain associated with Ruscheweyh q-differential operator, J. Results Math., 71(2017), 1345-1357.

Miller, S.S., Mocanu, P.T., Differential Subordinations Theory and Applications, Marcel Decker Inc., New York, 2000.

Nishiwaki, J., Owa, S., Coefficient estimates for certain classes of analytic functions, J. Inequal. Pure Appl. Math., 3(2002), 1-5.

Nishiwaki, J., Owa, S., Certain classes of analytic functions concerned with uniformly starlike and convex functions, Appl. Math. Comput., 187(2007), 350-355.

Owa, S., Srivastava, H.M., Some generalized convolution properties associated with cerain subclasses of analytic functions, J. Inequal. Pure Appl. Math., 3(2002), no. 3, 1-13.

Ruscheweyh,St., New criteria for univalent functions, Proc. Amer. Math. Soc., 49(1975), 109-115.

Shams, S., Kulkarni, S.R., Jahangiri, J.M., Classes of uniformly starlike and convex functions, Int. J. Math. Math. Sci., 55(2004), 2959-2961.

Uralegaddi, B.A., Ganigi, M.D., Sarangi, S.M., Univalent functions with positive coefficients, Tamkang J. Math., 25(1994), 225-230.

Downloads

Published

2020-06-05

How to Cite

MAHMOOD , S., MUSTAFA, S., & KHAN, I. (2020). Application of Ruscheweyh q-differential operator to analytic functions of reciprocal order. Studia Universitatis Babeș-Bolyai Mathematica, 65(2), 199–210. https://doi.org/10.24193/subbmath.2020.2.03

Issue

Section

Articles

Similar Articles

<< < 20 21 22 23 24 25 26 27 28 29 > >> 

You may also start an advanced similarity search for this article.