Generalization of weighted Ostrowski–Grüss type inequality by using Korkine’s identity

Authors

  • Silvestru Sever DRAGOMIR “Victoria University” College of Engineering and Science PO Box 14428, Melbourne City, Australia, e-mail: sever.dragomir@vu.edu.au https://orcid.org/0000-0003-2902-6805
  • Nazia IRSHAD “University of Karachi” Department of Mathematics University Road, Karachi-75270, Pakistan, e-mail: nazia_irshad@yahoo.com
  • Asif R. KHAN “University of Karachi” Department of Mathematics University Road, Karachi-75270, Pakistan, e-mail: asifrk@uok.edu.pk https://orcid.org/0000-0002-4700-4987

DOI:

https://doi.org/10.24193/subbmath.2020.2.02

Keywords:

Weighted Ostrowski-Grüss Inequality, Euclidean norm, Weighted Korkine’s identity, Probability density function.

Abstract

We obtain generalized weighted Ostrowski-Grüss type inequality with parameters for differentiable functions by using the weighted Korkine’s identity, and we then apply these obtained inequalities to probability density functions. Also, we discuss some applications of numerical quadrature rules.

Mathematics Subject Classification (2010): 26D15, 26D20, 26D99.

References

Barnett, N.S., Cerone, P., Dragomir, S.S., Roumeliotis, J., Some inequalities for the dispersion of a random variable whose pdf is defined on a finite interval, J. Inequal. Pure and Appl. Math., 2(2001), no. 1, Art. 1, 18 pp.

Barnett, N.S., Dragomir, S.S., Sofo, A., Better bounds for an inequality of Ostrowski type with applications, Demonstratio Math., 34(2001), no. 3, 533-542. Preprint RGMIA Res. Rep. Coll., 3(2000), no. 1, Art. 11.

Dragomir, S.S., Wang, S., An inequality of Ostrowski-Gru¨ss type and its applications to the estimation of error bounds for some special means and for some numerical quadrature rules, Comput. Math. Appl., 33(1997), 15-20.

Gru¨ss, G., U¨ber das Maximum des absoluten Betrages von, Math. Z., 39(1935), 215-226. [5] Imtiaz, M., Irshad, N., Khan, A.R., Generalization of weighted Ostrowski integral inequality for twice differentiable mappings, Adv. Inequal. Appl., 20(2016), Art. 20.

Irshad, N., Khan, A.R., On weighted Ostrowski-Gru¨ss inequality with applications, T.J.M.M, 10(2018), no. 1, 15-20.

Mati´c, M., Peˇcari´c, J.E., Ujevi´c, N., Improvement and further generalization of some inequalities of Ostrowski-Gru¨ss type, Comput. Math. Appl., 39(2000), no. 3/4, 161-175.

Mitrinovi´c, D.S., Peˇcari´c, J.E., Fink, A.M., Classical and New Inequalities in Analysis, Kluwer Academic Publishers, Dordrecht, 1991.

Mitrinovi´c, D.S., Peˇcari´c, J.E., Fink, A.M., Inequalities for Functions and their Integrals and Derivatives, Kluwer Academic, Dordrecht, 1991.

Ostrowski, A.M., U¨ber die absolutabweichung einer differentiebaren funktion von ihren integralmittelwert, Comment. Math. Helv., 10(1938), 226-227.

Pachpatte, B.G., On Cˇebyˇsev-Gruss type inequalities via Pecaric’s extention of the Montgomery identity, J. Inequal. Pure and Appl. Math., 7(2006), no. 1, Art. 11.

Zafar, F., Mir, N.A., A generalization of Ostrowski-Gru¨ss type inequality for first differentiable mappings, Tamsui Oxford J. Math. Sci., 26(2010), no. 1, 61-76.

Downloads

Published

2020-06-05

How to Cite

DRAGOMIR, S. S., IRSHAD , N., & KHAN, A. R. (2020). Generalization of weighted Ostrowski–Grüss type inequality by using Korkine’s identity. Studia Universitatis Babeș-Bolyai Mathematica, 65(2), 183–198. https://doi.org/10.24193/subbmath.2020.2.02

Issue

Section

Articles

Similar Articles

<< < 15 16 17 18 19 20 21 22 23 24 > >> 

You may also start an advanced similarity search for this article.