Existence and multiplicity of positive radial solutions to the Dirichlet problem for nonlinear elliptic equations on annular domains

Authors

  • Noureddine BOUTERAA “Laboratory of Fundamental and Applied Mathematics of Oran (LMFAO)” University of Oran1, Ahmed Benbella, Algeria, e-mail: bouteraa-27@hotmail.fr
  • Slimane BENAICHA “Laboratory of Fundamental and Applied Mathematics of Oran (LMFAO)” University of Oran1, Ahmed Benbella, Algeria, e-mail: slimanebenaicha@yahoo.fr

DOI:

https://doi.org/10.24193/subbmath.2020.1.09

Keywords:

Positive solution, elliptic equations, existence, multiplicity, local boundary, Green’s function.

Abstract

In this paper, we study the existence and nonexistence of monotone positive radial solutions of elliptic boundary value problems on bounded annular domains subject to local boundary condition. By using Krasnoselskii’s fixed point theorem of cone expansion-compression type we show that there exists λ∗ ≥ λ∗ > 0 such that the elliptic equation has at least two, one and no radial positive solutions for 0 < λ ≤ λ∗, λ∗ < λ ≤ λ∗ and λ > λ∗ respectively. We include an example to illustrate our results.

Mathematics Subject Classification (2010): 35J25, 34B18.

References

Bandle, C., Coffman, C.V., Marcus, M., Nonlinear elliptic problems in the annulus, J. Differential Equations, 69(1978), 322-345.

Bebernes, J., Lacey, A.A., Global existence and nite-time blow-up for a class of nonlocal parabolic problems, Adv. Differential Equations, 2(6)(1997), 927-953.

Bernstein, S., Sur les equations du calcul des variations, Ann. Sci. Ecole Norm. Sup., 29(1912), 431-485.

Bonheure, D., Serra, E., Multiple positive radial solutions on annulus for nonlinear Neumann problems with large growth, Nonlinear Differ. Equ. Appl., 18(2011), 217-235.

Bouteraa, N., Benaicha, S., Triple positive solutions of higher-order nonlinear boundary value problems, Journal of Computer Science and Computational Mathematics, 7(2017), no. 2, 25-31.

Bouteraa, N., Benaicha, S., Nonlinear boundary value problems for higher-order ordinary differential equation at resonance, Romanian Journal of Mathematic and Computer Science, 8(2018), no. 2, 83-91.

Bouteraa, N., Benaicha, S., Existence of solutions for third-order three-point boundary value problem, Mathematica, 60(83)(2018), no. 1, 12-22.

Bouteraa, N., Benaicha, S., Djourdem, H., Elarbi Benatia, M., Positive solutions for fourth-order two-point boundary value problem with a parameter, Romanian Journal of Mathematic and Computer Science, 8(2018), no. 1, 17-30.

Butler, D., Ko, E., Kyuong, E., Shivaji, R., Positive radial solutions for elliptic equations on exterior domains with nonlinear boundary conditions, Communication on Pure and Applied Analysis, 13(2014), no. 6, 2713-27631.

Cianciaruso, F., Infante, G., Pietramala, Solutions of perturbed Hammerstein integral equations with applications, Nonl. Anal. Real World Appl., 33(2017), 317-347.

Chipot, M., Lovat, B., Existence and uniqueness results for a class of nonlocal elliptic and parabolic problems, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal., 8(2001), 35-51.

Chipot, M., Rodriguez, J.F., On a class of nonlocal nonlinear elliptic problems, Math. Modl, Nume. Anal., 26(1992), no. 3, 447-468.

David, F., Radial solutions of an elliptic system, Houston J. Math., 15(1989), 425-458. [14] Egorov, Y., Kondratiev, V., On Spectral Theory of Elliptic Operators, Birkha¨user, Basel, Boston, Berlin, 1996.

Granas, A., Gunther, R., Lee, J., On a theorem of S. Bernstein, Pacific J. Math., 74(1978), 67-82.

Guo, D., Lakshmikantham, V., Nonlinear Problems in Abstract Cones, Acad. Press, Inc., Boston, MA, 1988.

Hakimi, S., Zertiti, A., Nonexistence of radial positive solutions for a nonpositone problem, Elec. J. Diff. Equ., 26(2011), 1-7.

Infante, G., Pietramala, P., Nonzero radial solutions for a class of elliptic systems with nonlocal BCs on annular domains, NoDEA Differential Equations Appl., 22(2015), 979- 1003.

Krasnoselskii, M., Positive Solutions of Operator Equations, P. Noordho Ltd., Groningen, 1964.

Krzywicki, A., Nadzieja, T., Nonlocal Elliptic Problems. Evolution Equations: Existence, Regularity and Singularities, Banach Center Publ, 52(2000), Polish Acad. Sci., Warsaw, 147-152.

Lions, P.L., On the existence of positive solutions of semilinear elliptic equations, SIAM Rev., 24(1982), 441-467.

Marcus, M., Bandle, C., The positive radial solutions of a class of semilinear elliptic equations, J. Reine Angrew. Math., 401(1989), 25-59.

Ma, R., Existence of positive radial solutions for elliptic systems, J. Math. Anal. Appl., 201(1996), 375-386.

Marcos do, O.J., Lorca, S., Sanchez, J., Ubilla, P., Positive solutions for some nonlocal and nonvariational elliptic systems, Comp. Variab. Ellip. Equ., (2015), 18 pages.

McLeod, K., Serrin, J., Uniqueness of positive radial solutions of ∆u + f (u) = 0 in Rn, Arch. Rational Mech. Anal., 99(1987), 115-145.

Ni, W.M., Nussbaum, R.D., Uniqueness and nonuniqueness for positive radial solutions of ∆u + f (u, r) = 0, Commun. Pure Appl. Math., 38(1985), no. 1, 67-108.

Ockedon, J., Howison, S., Lacey, A., Movchan, A., Applied Partial Differential Equations, Oxford University Press, 2003.

Ovono, A., Rougirel, A., Elliptic equations with diffusion parameterized by the range of nnonlocal interactions, Annali di Mathematica, 009-0104-y (2009).

Precup, R., Existence, localization and multiplicity results for positive radial solutions of semilinear elliptic systems, J. Math. Anal. Appl., 352(2009), 48-56.

Stanczy, R., Nonlocal elliptic equations, Nonlinear Anal., 47(2001), 3579-3584.

Sfecci, A., Nonresonance conditions for radial solution of nonlinear Neumann elliptic problems on annuli, Rend. Instit. Math. Univ. Trieste, V(46)(2014), 255-270.

Wang, H., On the existence of positive radial solution for semilinear elliptic equations in the annulus, J. Differential Equations, 109(1994), 1-8.

Downloads

Published

2020-03-06

How to Cite

BOUTERAA, N., & BENAICHA, S. (2020). Existence and multiplicity of positive radial solutions to the Dirichlet problem for nonlinear elliptic equations on annular domains. Studia Universitatis Babeș-Bolyai Mathematica, 65(1), 109–125. https://doi.org/10.24193/subbmath.2020.1.09

Issue

Section

Articles

Similar Articles

<< < 30 31 32 33 34 35 36 > >> 

You may also start an advanced similarity search for this article.