Some properties of a linear operator involving generalized Mittag-Leffler function
DOI:
https://doi.org/10.24193/subbmath.2020.1.06Keywords:
Analytic functions, univalent functions, Mittag-Leffler function, differential subordination, convex function.Abstract
This paper introduces a new class Tγ ... (η) of analytic functions which is defined by means of a linear operator involving generalized Mittag-Leffler function H γ α,β,k (f ). The results investigated in this paper include, an inclusion relation for functions in the class T ;;k() and also some subordination results of the linear operator H ;;k(f). Several consequences of our results are also pointed out.
Mathematics Subject Classification (2010): 33E12, 30C45.
References
Attiya, A.A., Some applications of Mittag-Leffler function in the unit disk, Filomat, 30(2016), no. 7, 2075-2081.
Bansal, D., Prajapat, J.K., Certain geometric properties of the Mittag-Leffler functions, Complex Var. Elliptic Equ., 61(2016), no. 3, 338-350.
Frasin, B.A., An application of an operator associated with generalized Mittag-Leffler function, Konuralp Journal of Mathematics, 7(2019), no. 1, 199-202.
Garg, M., Manohar, P., Kalla, S.L., A Mittag-Leffler-type function of two variables, Integral Transforms Spec. Funct., 24(2013), no. 11, 934-944.
Hallenbeck, D.J., Ruscheweyh, S., Subordination by convex functions, Proc. Am. Math. Soc., 52(1975), 191-195.
Kiryakova, V., Generalized Fractional Calculus and Applications, Pitman Research Notes in Mathematics Series, 301. Longman Scientific & Technical, Harlow; copublished in the United States with John Wiley & Sons, Inc., New York, 1994.
Kiryakova, V., Multiple (multiindex) Mittag-Leffler functions and relations to generalized fractional calculus. Higher transcendental functions and their applications, J. Comput. Appl. Math., 118(2000), no. 1-2, 241-259.
Kiryakova, V., The multi-index Mittag-Leffler functions as an important class of special functions of fractional calculus, Comput. Math. Appl., 59(2010), no. 5, 1885-1895.
Mainardia, F., Gorenflo, R., On Mittag-Leffler-type functions in fractional evolution processes. Higher transcendental functions and their applications, J. Comput. Appl. Math., 118(2000), no. 1-2, 283-299.
Miller, S.S., Mocanu, P.T., Second order differential inequalities in the complex plane, J. Math. An. Appl., 65(1978), 289-305.
Mittag-Leffler, G.M., Sur la nouvelle fonction E(x), C.R. Acad. Sci., Paris, 137(1903), 554-558.
Srivastava, H.M., Frasin, B.A., Pescar, V., Univalence of integral operators involving Mittag-Leffler functions, Appl. Math. Inf. Sci., 11(2017), no. 3, 635-641.
Srivastava, H.M., Tomovski, Z., Fractional calculus with an integral operator containing a generalized Mittag-Leffler function in the kernel, Appl. Math. Comp., 211(2009), 198- 210.
Wiman, A., U¨ber den Fundamental satz in der Theorie der Funcktionen E(x), Acta Math., 29(1905), 191-201.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 Studia Universitatis Babeș-Bolyai Mathematica
![Creative Commons License](http://i.creativecommons.org/l/by-nc-nd/4.0/88x31.png)
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.