A generalized Ekeland’s variational principle for vector equilibria
DOI:
https://doi.org/10.24193/subbmath.2019.4.11Keywords:
Ekeland’s variational principle, (k0, K)-lower semicontinuity, vector triangle inequality, vector equilibria.Abstract
In this paper, we establish an Ekeland-type variational principle for vector valued bifunctions defined on complete metric spaces with values in locally convex spaces ordered by closed convex cones. The main improvement consists in widening the class of bifunctions for which the variational principle holds. In order to prove this principle, a weak notion of continuity for vector valued functions is considered, and some of its properties are presented. We also furnish an existence result for vector equilibria in absence of convexity assumptions, passing through the existence of approximate solutions of an optimization problem.
Mathematics Subject Classification (2010): 49J35, 49K40, 49J52.
References
Ansari, Q.H., Vector equilibrium problems and vector variational inequalities, in: Vector Variational Inequalities and Vector Equilibria, Mathematical Theories, ed. by F. Giannessi (Kluwer Academic, Dordrecht/Boston/London), 2000, 1-15.
Ansari, Q.H., Vectorial form of Ekeland-type variational principle with applications to vector equilibrium problems and fixed point theory, J. Math. Anal. Appl., 334(2007), 561-575.
Ansari, Q.H., Ekeland’s variational principle and its extensions with applications, in: Topics in Fixed Point Theory, ed. by S. Almezel, Q.H. Ansari, M.A. Khamsi (Springer, Cham/ Heidelberg/ New York/ Dordrecht/ London), 2014, 65-100.
Al-Homidan, S., Ansari, Q.H., Yao, J.-C., Some generalizations of Ekeland-type variational principle with applications to equilibrium problems and fixed point theory, Nonlinear Anal., 69(2008), no. 1, 126-139.
Araya, Y., Ekeland’s variational principle and its equivalent theorems in vector optimization, J. Math. Anal. Appl., 346(2008), 9-16.
Araya, Y., Kimura, K., Tanaka, T., Existence of vector equilibria via Ekeland’s variational principle, Taiwanese J. Math., 12(8)(2008), 1991-2000.
Bianchi, M., Kassay, G., Pini, R., Ekeland’s principle for vector equilibrium problems, Nonlinear Anal., 66(2007), 1454-1464.
Blum, E., Oettli, W., From optimization and variational inequalities to equilibrium problems, Math. Student, 63(1994), no. 1-4, 123-145.
Borwein, J.M., Penot, J.P., Th´era, M., Conjugate convex operators, J. Math. Anal. Appl., 102(1984), 399-414.
Castellani, M., Giuli, M., Ekeland’s principle for cyclically antimonotone equilibrium problems, Nonlinear Anal., Real World Appl., 32(2016), 213-228.
Ekeland, I., Sur les probl´emes variationnels, C.R. Acad. Sci.Paris, 275(1972), 1057-1059. [12] Finet, C., Quarta, L., Troestler, C., Vector-valued variational principles, Nonlinear Anal., 52(2003), 197-218.
G¨opfert, A., Riahi, H., Tammer, Chr., Zalinescu, C., Variational Methods in Partially Ordered Spaces, Springer-Verlag, New York, 2003.
G¨opfert, A., Tammer, Chr., Zalinescu, C., On the vectorial Ekeland’s variational principle and minimal points in product spaces, Nonlinear Anal., 39(2000), 909-922.
Guti´errez, C., Kassay, G., Novo, V., R´odenas-Pedregosa, J.L., Ekeland variational principles in vector equilibrium problems, SIAM Journal on Optimization, 27(4)(2017), 2405- 2425.
Khan, A., Tammer, Chr., Z˘alinescu, C., Set-valued optimization, An introduction with application, Springer-Verlag, Berlin Heidelberg, 2015.
Luc, D.T., Theory of Vector Optimization, Springer-Verlag, Germany, 1989.
Oettli, W., Th´era, M., Equivalents of Ekeland’s principle, Bull. Austral. Math. Soc., 48(1993), 385-392.
Tammer, Chr., A generalization of Ekeland’s variational principle, Optimization, 25(1992), 129-141.
Tammer Gerth, Chr., Weidner, P., Nonconvex separation theorems and some applications in vector optimization, J. Optim. Theory Appl., 67(1990), 297-320.
Th´era, M., E´tude des fonctions convexes vectorielles s´emicontinues, Th`ese de 3e cycle, Universit´e de Pau, 1978.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2019 Studia Universitatis Babeș-Bolyai Mathematica
![Creative Commons License](http://i.creativecommons.org/l/by-nc-nd/4.0/88x31.png)
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.