The study of the solution of a Fredholm-Volterra integral equation by Picard operators
DOI:
https://doi.org/10.24193/subbmath.2019.4.09Keywords:
Picard operators, Fredholm integral equation, Volterra integral equation, data dependence, integral inequalities, Ulam-Hyers stability.Abstract
In this paper we will use the Picard operators technique, in order to establish the existence and uniqueness, data dependence and Gronwall-type results for the solutions of a Fredholm-Volterra functional-integral equation. The paper ends with a result of the Ulam-Hyers stability of this integral equation.
Mathematics Subject Classification (2010): 45G10, 47H10.
References
Andras, Sz., Ecua¸tii integrale Fredholm-Volterra, Editura Didactic˘a ¸si Pedagogica˘, Bucure¸sti, 2005.
Calio, F., Marcchetti, E., Mure¸san, V., On some Volterra-Fredholm integral equations, Int. J. Pure Appl. Math., 31(2006), no. 2, 173-184.
Coman, Gh., Rus, I., Pavel, G., Rus, I. A., Introducere ˆın teoria ecua¸tiilor operatoriale, Editura Dacia, Cluj-Napoca, 1976.
Cr˘aciun, C., On some Gronwall inequalities, Seminar on Fixed Point Theory, 1(2000), 31-34.
Cr˘aciun, C., Lungu, N., Abstract and concrete Gronwall lemmas, Fixed Point Theory, 10(2009), no. 2, 221-228.
Cr˘aciun, C., S¸erban, M.A., A nonlinear integral equation via Picard operators, Fixed Point Theory, 12(2011), no. 1, 57-70.
Dobri¸toiu, M., The solution to a Fredholm implicit integral equation in the B(0; R) sphere, Bulletins for Applied & Computer Mathematics, Budapest, BAM CV (2003), no. 2162, 27-32.
Dobri¸toiu, M., Existence and continuous dependence on data of the solution of an integral equation, Bulletins for Applied & Computer Mathematics, Budapest, 2005.
Dobri¸toiu, M., A Fredholm-Volterra integral equation with modified argument, Analele Univ. din Oradea, Fasc. Matematica, tom XIII, 2006, 133-138.
Dobri¸toiu, M., On an integral equation with modified argument, Acta Univ. Apulensis Math. Inform., 2006, no. 11, 387-391.
Dobri¸toiu, M., Analysis of an integral equation with modified argument, Stud. Univ. Babe¸s-Bolyai Math., 51(2006), no. 1, 81-94.
Dobri¸toiu, M., Properties of the solution of an integral equation with modified argument, Carpathian J. Math., 23(2007), no. 1-2, 70-80.
Dobri¸toiu, M., A nonlinear Fredholm integral equation, Transylvanian Journal of Mathematics and Mechanics, 1(2009), no. 1-2, 25-32.
Dobri¸toiu, M., A class of nonlinear integral equations, Transylvanian Journal of Mathematics and Mechanics, 4(2012), no. 2, 117-123.
Lungu, N., On some Volterra integral inequalities, Fixed Point Theory, 8(2007), no. 1, 39-45.
Olaru, I.M., An integral equation via weakly Picard operators, Fixed Point Theory, 11(2010), no. 1, 97-106.
Olaru, I.M., Data dependence for some integral equations, Stud. Univ. Babe¸s-Bolyai Math., 55(2010), no. 2, 159-165.
Olaru, I.M., On some integral equations with deviating argument, Stud. Univ. Babe¸s- Bolyai Math., 50(2005), no. 4, 65-72.
Petru¸sel, A., Fredholm-Volterra integral equations and Maia’s theorem, Seminar on Fixed Point Theory, Babe¸s-Bolyai University Cluj-Napoca, 1988, 79-82.
Rus, I.A., Results and problems in Ulam stability of operatorial equations and inclusions. Handbook of functional equations, Springer Optim. Appl., 96(2014), 323-352.
Rus, I.A., Remarks on Ulam stability of the operatorial equations, Fixed Point Theory, 10(2009), 305-320.
Rus, I.A., Fixed points, upper and lower fixed points: abstract Gronwall lemmas, Carpathian J. Math., 20(2004), no. 1, 125-134.
Rus, I.A., Picard operators and applications, Sci. Math. Jpn., 58(2003), no. 1, 191-219. [24] Rus, I.A., Generalized Contractions and Applications, Cluj University Press, Cluj-Napoca, 2001.
Rus, I.A., Weakly Picard operators and applications, Seminar on Fixed Point Theory, Babe¸s-Bolyai University Cluj-Napoca, 2(2001), 41-58.
Rus, I.A., Principii ¸si Aplica¸tii ale Teoriei Punctului Fix, Editura Dacia, Cluj-Napoca, 1979.
Sincelean, A., On a class of functional-integral equations, Seminar on Fixed Point Theory, Babe¸s-Bolyai University Cluj-Napoca, 1(2000), 87-92.
S¸erban, M.A., Teoria Punctului Fix pentru Operatori Defini¸ti pe Produs Cartezian, Presa Universitara˘ Clujeana˘, Cluj-Napoca, 2002.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2019 Studia Universitatis Babeș-Bolyai Mathematica
![Creative Commons License](http://i.creativecommons.org/l/by-nc-nd/4.0/88x31.png)
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.