Statistical e−convergence of double sequences on probabilistic normed spaces
DOI:
https://doi.org/10.24193/subbmath.2019.4.07Keywords:
Double sequences, t-norm, probabilistic normed spaces, e−convergence, statistical e−convergence.Abstract
The concept of statistical convergence for double sequences on probabilistic normed spaces was presented by Karakus and Demirci in 2007. The purpose of this paper is to introduce the concept of statistical e−convergence for double sequences and study some fundamental properties of statistical e−convergence for double sequences on probabilistic normed spaces.
Mathematics Subject Classification (2010): 40A05, 40G15, 40B05.
References
Alsina, C., Schweizer, B., Sklar, A., Continuity properties of probabilistic norms, J. Math. Anal. Appl., 208(1997), 446-452.
Boos, J., Classical and Modern Methods in Summability, Oxford University Press Inc., New York, 2000.
Boos, J., Leiger, T., Zeller, K., Consistency theory for SM-methods, Acta Math. Hungar., 76(1997), 109-142.
Fast, H., Sur la convergence statistique, Colloq. Math., 2(1951), 241-244.
Frank, M. J., Probabilistic topological spaces, J. Math. Anal. Appl., 34(1971), 67-81. [6] Fridy, J.A., On statistical convergence, Analysis (Berlin), 5(1985), 301-313.
Guille’n, B.L., Lallena, J.A.R., Sempi, C., A study of boundedness in probabilistic normed spaces, J. Math. Anal. Appl., 232(1999), 183-196.
Guille’n, B.L., Sempi, C., Probabilistic norms and convergence of random variables, J. Math. Anal. Appl., 280(2003), 9-16.
Karakus, S., Statistical convergence on probabilistic normed spaces, Math. Commun., 12(2007), 11-23.
Karakus, S., Demirci, K., Statistical convergence of double sequences on probabilistic normed space, Int. J. Math. and Math. Sci., Vol. 2007, Art. ID 14737, 11 pages (2007). [11] Karaku¸s, S., Demirci, K., Duman, O., Equi-statistical convergence of positive linear operators, J. Math. Anal. Appl., 339(2008), 1065-1072.
Karaku¸s, S., Demirci, K., Duman, O., Statistical convergence on intuitionistic fuzzy normed spaces, Chaos Solitons Fractals, 35(2008), 763-769.
Menger, K., Statistical metrics, Proc. Natl. Acad. Sci. USA, 28(1942), 535-537.
Moricz, F., Statistical convergence of multiple sequences, Arch. Math. (Basel), 81(2003), 82-89.
Mursaleen, M., Edely, Osama H.H., Statistical convergence of double sequences, J. Math. Anal. Appl., 288(2003), 223-231.
Pringsheim, A., Zur Theorie der zweifach unendlichen Zahlenfolgen, Math. Ann., 53(1900), 289-321.
Schweizer, B., Sklar, A., Statistical metric spaces, Pacific J. Math., 10(1960), 313-334. [18] Schweizer, B., Sklar, A., Probabilistic Metric Spaces, North Holland, New York-Amsterdam-Oxford, 1983.
Sever, Y., Talo, Ö., Statistical e−convergence of double sequences and its application to Korovkin type approximation theorem for functions of two variables, Iran J. Sci. Technol. Trans. A Sci., 41(2017), no. 3, 851-857.
Sever, Y., Talo, Ö., On statistical e−convergence of double sequences, Iran J. Sci. Technol Trans A Sci., 42(2018), no. 4, 2063-2068.
Steinhaus, H., Sur la convergence ordinaire et la convergence asymptotique, Colloq. Math., 2(1951), 73-74.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2019 Studia Universitatis Babeș-Bolyai Mathematica
![Creative Commons License](http://i.creativecommons.org/l/by-nc-nd/4.0/88x31.png)
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.