A note on a transmission problem for the Brinkman system and the generalized Darcy-Forchheimer-Brinkman system in Lipschitz domains in R³

Authors

  • Andrei-Florin ALBIȘORU Babe¸s-Bolyai University Faculty of Mathematics and Computer Science 1, Kog˘alniceanu Street 400084 Cluj-Napoca, Romania, e-mail: florin.albisoru@math.ubbcluj.ro

DOI:

https://doi.org/10.24193/subbmath.2019.3.10

Keywords:

Sobolev spaces, generalized Brinkman system, transmission problems, generalized Darcy-Forchheimer-Brinkman system, well-posedness result, Banach fixed point theorem.

Abstract

The purpose of this paper is to treat a nonlinear transmission-type problem for a generalized version of the Darcy-Forchheimer-Brinkman system and the classical Brinkman system in complementary Lipschitz domains in R³. First of all, we define the required spaces in which we seek our solution. Next, we describe the generalized Brinkman and the generalized Darcy-Forchheimer- Brinkman systems. Further, we give important lemmas that allow us to intro- duce the trace and conormal derivative operators that appear in the formulation of our transmission problem. We invoke a result regarding the well-posedness of the (linear) transmission problem for the generalized and classical Brinkman systems in complementary Lipschitz domains in R³. The above mentioned well- posedness result in the linear case combined with Banach’s fixed point theorem will allow us to establish the main result of the paper, the well-posedness of the transmission problem for the Brinkman system and the nonlinear generalized Darcy-Forchheimer-Brinkman system in Lipschitz domains in R³.

Mathematics Subject Classification (2010): 35J25, 35Q35, 46E35.

References

Agranovich, M.S., Sobolev Spaces, Their Generalizations and Elliptic Problems in Smooth and Lipschitz Domains, Springer International Publishing, Cham, 2015.

Albi¸soru, A.F., A layer potential analysis for transmission problems for Brinkman-type systems in Lipschitz domains in R ³, Math. Nachr., DOI:10.1002/mana.201800139.

Albi¸soru, A.F., Transmission-type problems for the generalized Darcy-Forchheimer- Brinkman and Stokes systems in complementary Lipschitz domains in R ³, Filomat, accepted.

Escauriaza, L., Mitrea, M., Transmission problems and spectral theory for singular integral operators on Lipschitz domains, J. Funct. Anal., 216(2004), 141-171.

Galdi, G.P., An Introduction to the Mathematical Theory of the Navier-Stokes Equations, Vol. I, II, Springer, Berlin, 1998.

Gro¸san, T., Kohr, M., Wendland, W.L., Dirichlet problem for a nonlinear generalized Darcy-Forchheimer-Brinkman system in Lipschitz domains, Math. Methods Appl. Sci., 38(2015), 3615-3628.

Hsiao, G.C., Wendland, W.L., Boundary Integral Equations: Variational Methods, Springer, Heidelberg, 2008.

Kohr, M., Lanza de Cristoforis, M., Mikhailov, S.E., Wendland, W.L., Integral potential method for a transmission problem with Lipschitz interface in R ³ for the Stokes and Darcy-Forchheimer-Brinkman PDE Systems, Z. Angew. Math. Phys., 67:116, 5(2016), 1-30.

Kohr, M., Lanza de Cristoforis, M., Wendland, W.L., Boundary value problems of Robin type for the Brinkman and Darcy-Forchheimer-Brinkman systems in Lipschitz domains, J. Math. Fluid Mech., 16(2014), 595-630.

Kohr, M., Lanza de Cristoforis, M., Wendland, W.L., Nonlinear Darcy-Forchheimer- Brinkman System with Linear Robin Boundary Conditions in Lipschitz Domains, Com- plex Analysis and Potential Theory with Applications (T. Aliev Azeroglu, A. Golberg, S. Rogosin eds.), Cambridge Scientific Publishers, 2014, 111-124.

Kohr, M., Lanza de Cristoforis, M., Wendland, W.L., Nonlinear Neumann-transmission problems for Stokes and Brinkman equations on Euclidean Lipschitz domains, Potential Anal., 38(2013), 1123-1171.

Kohr, M., Lanza de Cristoforis, M., Wendland, W.L., On the Robin-transmission boundary value oroblems for the Darcy-Forchheimer-Brinkman and Navier-Stokes systems, J. Math. Fluid Mech., 18(2016), 293-329.

Kohr, M., Lanza de Cristoforis, M., Wendland, W.L., Poisson problems for semilinear Brinkman systems on Lipschitz domains in Rn, Z. Angew. Math. Phys., 66(2015), 833- 864.

Kohr, M., Mikhailov, S.E., Wendland, W.L., Transmission problems for the Navier- Stokes and Darcy-Forchheimer-Brinkman systems in Lipschitz domains on compact Riemannian manifolds, J. Math. Fluid Mech., 19(2017), 203-238.

Kohr, M., Wendland, W.L., Variational approach for the Stokes and Navier-Stokes systems with nonsmooth coefficients in Lipschitz domains on compact Riemannian manifolds, Calc. Var. Partial Differential Equations, 57:165, https://doi.org/10.1007/s00526- 018-1426-7.

Medkova, D., Transmission problem for the Brinkman system, Complex Var. Elliptic Equ., 59(2014), 1664-1678.

Medkova, D., Integral equations method and the transmission problem for the Stokes system, Kragujevac J. Math., 39(2015), 53-71.

Mikhailov, S.E., Traces, extensions and co-normal derivatives for elliptic systems on Lipschitz domains, J. Math. Anal. Appl., 378(2011), 324-342.

Mitrea, D., Mitrea, M., Shi, Q., Variable coefficient transmission problems and singular integral operators on non-smooth manifolds, J. Integral Equations Appl., 18(2006), 361- 397.

Mitrea, M., Wright, M., Boundary Value Problems for the Stokes System in Arbitrary Lipschitz Domains, Asterisque, 344(2012), viii+241.

Nield, D.A., Bejan, A., Convection in Porous Media, 3rd edn., Springer, New York, 2013.

Downloads

Published

2019-09-30

How to Cite

ALBIȘORU, A.-F. (2019). A note on a transmission problem for the Brinkman system and the generalized Darcy-Forchheimer-Brinkman system in Lipschitz domains in R³. Studia Universitatis Babeș-Bolyai Mathematica, 64(3), 399–412. https://doi.org/10.24193/subbmath.2019.3.10

Issue

Section

Articles

Similar Articles

<< < 5 6 7 8 9 10 11 12 13 14 > >> 

You may also start an advanced similarity search for this article.